def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.avg_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.linear(out) return out
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.relu(self.bn2(self.conv2(out))) # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10 out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.layer5(out) out = F.avg_pool2d(out, 8) out = self.linear(out.view(out.size(0), -1)) return out
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) # out = F.max_pool2d(out, 3, stride=2, padding=1) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.relu(self.bn2(self.conv2(out))) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
def forward(self, x): out = self.conv1(x) print(out.shape) out = self.trans1(self.dense1(out)) print(out.shape) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) # Squeeze w = F.avg_pool2d(out, out.size(2)) w = F.relu(self.fc1(w)) w = F.sigmoid(self.fc2(w)) # Excitation out = out * w # New broadcasting feature from v0.2! out += self.shortcut(x) out = F.relu(out) return out
def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) # Squeeze w = F.avg_pool2d(out, out.size(2)) w = F.relu(self.fc1(w)) w = F.sigmoid(self.fc2(w)) # Excitation out = out * w out += shortcut return out
def forward(self, x): out = self.conv(F.relu(self.bn(x))) print(out.shape) out = F.avg_pool2d(out, 2) print(out.shape) return out