Exemple #1
0
 def __init__(
     self,
     in_channels: int,
     out_channels: int,
     kernel_size: _size_3_t,
     stride: _size_3_t = 1,
     padding: _size_3_t = 0,
     output_padding: _size_3_t = 0,
     groups: int = 1,
     bias: bool = True,
     dilation: _size_3_t = 1,
     padding_mode: str = "zeros",
 ) -> None:
     super().__init__()
     assert padding_mode == "zeros", "Only `zeros` padding mode is supported"
     self.kernel_size = _triple(kernel_size)
     self.stride = _triple(stride)
     self.padding = _triple(padding)
     self.dilation = _triple(dilation)
     self.output_padding = _triple(output_padding)
     self.groups = groups
     assert in_channels % groups == 0
     assert out_channels % groups == 0
     self.weight = flow.nn.Parameter(
         flow.Tensor(in_channels, out_channels // groups, *self.kernel_size)
     )
     self.filters = out_channels
     self.bias = None
     self._bias_add_op = None
     if bias:
         self.bias = flow.nn.Parameter(flow.Tensor(out_channels))
     self.reset_parameters()
Exemple #2
0
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: _size_3_t,
        stride: _size_3_t = 1,
        padding: _size_3_t = 0,
        dilation: _size_3_t = 1,
        groups: int = 1,
        bias: bool = True,
        padding_mode: str = "zeros",  # TODO: refine this type
    ):
        super().__init__()

        assert padding_mode == "zeros"
        self.padding_mode = padding_mode
        self.kernel_size = _triple(kernel_size)
        self.stride = _triple(stride)
        self.padding = _triple(padding)
        self.dilation = _triple(dilation)
        self.groups = groups
        self.channel_pos = "channels_first"
        assert in_channels % groups == 0, "in_channels must be divisible by groups"
        assert out_channels % groups == 0, "out_channels must be divisible by groups"
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.weight = flow.nn.Parameter(
            flow.Tensor(out_channels, in_channels // groups, *self.kernel_size)
        )
        self.out_channel_groups = out_channels // groups
        self.bias = None
        if bias:
            self.bias = flow.nn.Parameter(flow.Tensor(out_channels))
        self.reset_parameters()
Exemple #3
0
 def __init__(
     self,
     kernel_size: _size_3_t,
     stride: Optional[_size_3_t] = None,
     padding: _size_3_t = 0,
     ceil_mode: bool = False,
     count_include_pad: bool = True,
     divisor_override: int = 0,
 ):
     super().__init__()
     self.kernel_size = _triple(kernel_size)
     data_format = "NCHW"  # only support "NCHW" for now !
     self.channel_pos = ("channels_first"
                         if data_format == "NCHW" else "channels_last")
     self.stride = _triple(stride) if (
         stride is not None) else _triple(kernel_size)
     self.ceil_mode = ceil_mode
     self.count_include_pad = count_include_pad
     self.divisor_override = int(divisor_override)
     self.padding = _triple(padding)
Exemple #4
0
 def __init__(
     self,
     kernel_size: _size_3_t,
     stride: Optional[_size_3_t] = None,
     padding: _size_3_t = 0,
     dilation: _size_3_t = 1,
     return_indices: bool = False,
     ceil_mode: bool = False,
 ):
     super().__init__()
     self.kernel_size = _triple(kernel_size)
     self.stride = _triple(stride) if (
         stride is not None) else _triple(kernel_size)
     data_format = "NCDHW"
     self.channel_pos = ("channels_last"
                         if data_format == "NDHWC" else "channels_first")
     self.dilation = _triple(dilation)
     self.padding = _triple(padding)
     self.return_indices = return_indices
     self.ceil_mode = ceil_mode
Exemple #5
0
 def __init__(self, output_size) -> None:
     super().__init__()
     assert output_size is not None, "'output_size' cannot be NoneType"
     self.output_size = _triple(output_size)