Exemple #1
0
 def test_masked_select_broadcast(test_case):
     x = flow.ones(2, 3, 3)
     mask = flow.triu(flow.ones(3, 3), 1)
     flow_res = flow.masked_select(x, mask)
     np_res = [1, 1, 1, 1, 1, 1]
     test_case.assertTrue(
         np.allclose(flow_res.numpy(), np_res, 1e-05, 1e-05))
Exemple #2
0
def _test_masked_select(test_case, device):
    x = flow.tensor(
        np.array([[-0.462, 0.3139], [0.3898, -0.7197], [0.0478, -0.1657]]),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=True,
    )
    mask = x.gt(0.05)
    of_out = flow.masked_select(x, mask)
    np_out = np.array([0.3139, 0.3898])
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-05, 1e-05))
    of_out = of_out.sum()
    of_out.backward()
    np_grad = np.array([[0, 1], [1, 0], [0, 0]])
    test_case.assertTrue(np.allclose(x.grad.numpy(), np_grad, 1e-05, 1e-05))
Exemple #3
0
def _test_masked_select_broadcast(test_case, device):
    x = flow.tensor(
        np.array([[[-0.462, 0.3139], [0.3898, -0.7197], [0.0478, -0.1657]]]),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=True,
    )
    mask = flow.tensor(
        np.array([
            [[1.0, 0.0], [1.0, 1.0], [0.0, 1.0]],
            [[1.0, 0], [1.0, 1.0], [0.0, 1.0]],
            [[1.0, 1.0], [0.0, 1.0], [1.0, 1.0]],
        ]),
        dtype=flow.int8,
        device=flow.device(device),
    )
    of_out = flow.masked_select(x, mask)
    np_out = [
        -0.462,
        0.3898,
        -0.7197,
        -0.1657,
        -0.462,
        0.3898,
        -0.7197,
        -0.1657,
        -0.462,
        0.3139,
        -0.7197,
        0.0478,
        -0.1657,
    ]
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-05, 1e-05))
    of_out = of_out.sum()
    of_out.backward()
    np_grad = [[[3.0, 1.0], [2.0, 3.0], [1.0, 3.0]]]
    test_case.assertTrue(np.allclose(x.grad.numpy(), np_grad, 1e-05, 1e-05))
Exemple #4
0
def _masked_select(self, mask):
    return flow.masked_select(self, mask)
Exemple #5
0
    def __init__(self, tensor):
        self.floating_dtype = tensor.dtype.is_floating_point
        self.int_mode = True
        self.sci_mode = False
        self.max_width = 1
        self.random_sample_num = 50
        tensor = _try_convert_to_local_tensor(tensor)

        with flow.no_grad():
            tensor_view = tensor.reshape(-1)

        if not self.floating_dtype:
            for value in tensor_view:
                value_str = "{}".format(value)
                self.max_width = max(self.max_width, len(value_str))

        else:
            nonzero_finite_vals = flow.masked_select(tensor_view, tensor_view.ne(0))
            if nonzero_finite_vals.numel() == 0:
                # no valid number, do nothing
                return

            nonzero_finite_abs = nonzero_finite_vals.abs()
            nonzero_finite_min = nonzero_finite_abs.min().numpy().astype(np.float64)
            nonzero_finite_max = nonzero_finite_abs.max().numpy().astype(np.float64)

            for value in nonzero_finite_abs.numpy():
                if value != np.ceil(value):
                    self.int_mode = False
                    break

            if self.int_mode:
                # Check if scientific representation should be used.
                if (
                    nonzero_finite_max / nonzero_finite_min > 1000.0
                    or nonzero_finite_max > 1.0e8
                ):
                    self.sci_mode = True
                    for value in nonzero_finite_vals:
                        value_str = (
                            ("{{:.{}e}}").format(PRINT_OPTS.precision).format(value)
                        )
                        self.max_width = max(self.max_width, len(value_str))
                else:
                    for value in nonzero_finite_vals:
                        value_str = ("{:.0f}").format(value)
                        self.max_width = max(self.max_width, len(value_str) + 1)
            else:
                if (
                    nonzero_finite_max / nonzero_finite_min > 1000.0
                    or nonzero_finite_max > 1.0e8
                    or nonzero_finite_min < 1.0e-4
                ):
                    self.sci_mode = True
                    for value in nonzero_finite_vals:
                        value_str = (
                            ("{{:.{}e}}").format(PRINT_OPTS.precision).format(value)
                        )
                        self.max_width = max(self.max_width, len(value_str))
                else:
                    for value in nonzero_finite_vals:
                        value_str = (
                            ("{{:.{}f}}").format(PRINT_OPTS.precision).format(value)
                        )
                        self.max_width = max(self.max_width, len(value_str))

        if PRINT_OPTS.sci_mode is not None:
            self.sci_mode = PRINT_OPTS.sci_mode