def make_sparse_tensor(values: TensorProto, indices: TensorProto, dims: Sequence[int]) -> SparseTensorProto: sparse = SparseTensorProto() sparse.values.CopyFrom(values) sparse.indices.CopyFrom(indices) sparse.dims.extend(dims) return sparse
def make_sparse_tensor( values, # type: TensorProto indices, # type: TensorProto dims # type: Sequence[int] ): # type: (...) -> SparseTensorProto sparse = SparseTensorProto() sparse.values.CopyFrom(values) sparse.indices.CopyFrom(indices) sparse.dims.extend(dims) return sparse
def _build_random_sparse_tensor(shape, sparsity): array_size = numpy.prod(shape) num_sparse = int(array_size * sparsity) array = numpy.random.randn(num_sparse) indices = numpy.random.choice( numpy.arange(array_size), replace=False, size=num_sparse ).astype(numpy.int64) return SparseTensorProto( values=numpy_helper.from_array(array), indices=numpy_helper.from_array(indices), dims=shape, )
def make_sparse(self, shape, # type: Sequence[int] values, # type: Sequence[int] indices_shape, # type: Sequence[int] indices # type: Sequence[int] ): # type: (...) -> SparseTensorProto sparse = SparseTensorProto() sparse.dims.extend(shape) nnz = len(values) sparse.values.CopyFrom(helper.make_tensor('spval', TensorProto.INT64, (nnz,), values)) sparse.indices.CopyFrom(helper.make_tensor('spind', TensorProto.INT64, indices_shape, indices)) return sparse
def make_sparse(self, shape: Sequence[int], values: Sequence[int], indices_shape: Sequence[int], indices: Sequence[int], name: Text = 'spval' ) -> SparseTensorProto: sparse = SparseTensorProto() sparse.dims.extend(shape) nnz = len(values) sparse.values.CopyFrom(helper.make_tensor(name, TensorProto.INT64, (nnz,), values)) sparse.indices.CopyFrom(helper.make_tensor('spind', TensorProto.INT64, indices_shape, indices)) return sparse
def make_sparse_tensor(values: TensorProto, indices: TensorProto, dims: Sequence[int]) -> SparseTensorProto: """Construct a SparseTensorProto Arguments: values (TensorProto): the values indices (TensorProto): the indices dims: the shape Returns: SparseTensorProto """ sparse = SparseTensorProto() sparse.values.CopyFrom(values) sparse.indices.CopyFrom(indices) sparse.dims.extend(dims) return sparse
def check_sparse_tensor(sparse: SparseTensorProto, ctx: C.CheckerContext = DEFAULT_CONTEXT) -> None: C.check_sparse_tensor(sparse.SerializeToString(), ctx)