Exemple #1
0
 def test_gpt2_past_fp16(self):
     input_model_path = _get_test_model_path('gpt2_past')
     model = OnnxModel(load_model(input_model_path, format=None, load_external_data=True))
     model.convert_float_to_float16(keep_io_types=False, use_symbolic_shape_infer=False)
     for input in model.graph().input[1:]:
         self.assertEqual(input.type.tensor_type.elem_type, TensorProto.FLOAT16)
     for output in model.graph().output:
         self.assertEqual(output.type.tensor_type.elem_type, TensorProto.FLOAT16)
Exemple #2
0
    def auto_mixed_precision(onnx_model: OnnxModel,
                             op_block_list: List[str] = [
                                 'Add', 'LayerNormalization', 'FastGelu'
                             ]):
        """Convert GPT-2 model to mixed precision.
           It detects whether original model has fp16 precision weights, and set parameters for float16 conversion automatically.
        Args:
            onnx_model (OnnxModel): optimized ONNX model
            op_block_list (List[str], optional): . Defaults to ['Add', 'LayerNormalization', 'FastGelu']
        Returns:
            parameters(dict): a dictionary of parameters used in float16 conversion
        """
        op_full_set = set([node.op_type for node in onnx_model.nodes()])
        fp32_op_set = set(op_block_list)
        fp16_op_set = op_full_set.difference(fp32_op_set)
        logger.info(f"fp32 op: {fp32_op_set} fp16 op: {fp16_op_set}")

        # logits is the first output
        logits_output_name = onnx_model.graph().output[0].name

        # We use the weight in last MatMul node to detect whether the model is stored with float16 weights from training.
        is_weight_fp16_precision = False
        output_name_to_node = onnx_model.output_name_to_node()
        assert logits_output_name in output_name_to_node
        node = output_name_to_node[logits_output_name]
        last_matmul_node = None
        if node.op_type == "MatMul":
            last_matmul_node = node
            logger.info(f"Found last MatMul node for logits: {node.name}")
            initializer = None
            for input in node.input:
                initializer = onnx_model.get_initializer(input)
                if initializer is not None:
                    break

            # when the max difference of value after converting float to float16 is lower than a threshold (1e-6),
            # we can deduce that the weights are stored in float16 precision.
            max_diff = float_to_float16_max_diff(initializer)
            logger.debug(
                f"max diff of converting weights in last MatMul node {node.name}: {max_diff}"
            )
            is_weight_fp16_precision = (max_diff < 1E-6)
        else:
            logger.warning(
                f"Failed to find MatMul node for logits. Found {node.op_type} of node {node.name}"
            )

        if is_weight_fp16_precision:
            keep_io_types = []
            node_block_list = []
        else:
            # When original weight is float32 precision, keep logits and last MatMul in float32 could get better precision.
            keep_io_types = [logits_output_name]
            node_block_list = [last_matmul_node.name]

        parameters = {
            "keep_io_types": keep_io_types,
            "op_block_list": op_block_list,
            "node_block_list": node_block_list,
            "force_fp16_initializers": is_weight_fp16_precision
        }

        logger.info(f"auto_mixed_precision parameters: {parameters}")
        onnx_model.convert_float_to_float16(use_symbolic_shape_infer=True,
                                            **parameters)

        fusion_utils = FusionUtils(onnx_model)
        fusion_utils.remove_cascaded_cast_nodes()
        fusion_utils.remove_useless_cast_nodes()

        return parameters