def test_target_diagram(self): values = np.array([3, 3, 2, 3, 6, 8, 5, 3, 4, 6, 4, 1, 7, 7, 6]) reference_values = np.array([2, 5, 1, 5, 5, 9, 4, 5, 3, 8, 3, 3, 6, 9, 5]) stats = processor.calculate_statistics(model_values=values, reference_values=reference_values, model_name='Linda', unit='g') values1 = np.array([2, 14, 8, 6, 10, 9, 6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values1 = np.array([5, 11, 6, 4, 11, 8, 7, 9, 2, 5, 11, -2, 1, 3, 9]) stats1 = processor.calculate_statistics(model_values=values1, reference_values=reference_values1, model_name='Kate', unit='mg') values2 = np.array([-2, -14, -8, -6, -10, -9, -6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values2 = np.array([-1, -10, -5, -5, -11, -8, -7, 5, 3, 13, 10, 2, 2, -1, 7]) stats2 = processor.calculate_statistics(model_values=values2, reference_values=reference_values2, model_name='Naomi', unit='kg') # print('ref_stddev: %s' % stats['ref_stddev']) # print('stddev: %s' % stats['stddev']) # print('unbiased rmse: %s' % stats['unbiased_rmse']) # print('corrcoeff: %s' % stats['corrcoeff']) # print('ref_stddev: %s' % stats2['ref_stddev']) # print('stddev: %s' % stats2['stddev']) # print('unbiased rmse: %s' % stats2['unbiased_rmse']) # print('corrcoeff: %s' % stats2['corrcoeff']) diagram = plotter.create_target_diagram((stats, stats1, stats2)) diagram.write('resources/target_test.png')
def test_taylor_diagram(self): values = np.array([0, 15, 2, 3, 15, 8, 5, 3, 9, 11, 12, 1, 7, 7, 6]) reference_values = np.array([9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats = processor.calculate_statistics(model_values=values, reference_values=reference_values, unit='mg') values1 = np.array([2, 14, 8, 6, 10, 9, 6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values1 = np.array([9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats1 = processor.calculate_statistics(model_values=values1, reference_values=reference_values1, model_name='Kate', unit='mg') values2 = np.array([-2, -14, -8, -6, -10, -9, -6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values2 = np.array([9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats2 = processor.calculate_statistics(model_values=values2, reference_values=reference_values2, unit='g') # print('ref_stddev: %s' % stats['ref_stddev']) # print('stddev: %s' % stats['stddev']) # print('unbiased rmse: %s' % stats['unbiased_rmse']) # print('corrcoeff: %s' % stats['corrcoeff']) # print('ref_stddev: %s' % stats2['ref_stddev']) # print('stddev: %s' % stats2['stddev']) # print('unbiased rmse: %s' % stats2['unbiased_rmse']) # print('corrcoeff: %s' % stats2['corrcoeff']) diagram = plotter.create_taylor_diagrams((stats, stats1))[0] diagram.plot_sample(stats2['corrcoeff'], stats2['stddev'], model_name='Linda', unit=stats2['unit']) diagram.write('resources/taylor_test.png')
def test_taylor_diagrams(self): values = np.array([0, 15, 2, 3, 15, 8, 5, 3, 9, 11, 12, 1, 7, 7, 6]) reference_values = np.array( [9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats = processor.calculate_statistics( model_values=values, reference_values=reference_values, model_name='Kate', unit='megazork') values1 = np.array([2, 14, 8, 6, 10, 9, 6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values1 = np.array( [9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats1 = processor.calculate_statistics( model_values=values1, reference_values=reference_values1, model_name='Linda', unit='megazork') values2 = np.array( [-2, -14, -8, -6, -10, -9, -6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values2 = np.array( [9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats2 = processor.calculate_statistics( model_values=values2, reference_values=reference_values2, model_name='Linda', unit='gimpel/m^3') diagrams = plotter.create_taylor_diagrams((stats, stats1, stats2)) self.assertEqual(2, len(diagrams)) for i, d in enumerate(diagrams): d.write('resources/taylor_test_%s.png' % i)
def test_output_csv(self): chl_ref_chl = ('chl', 'Ref_chl') chl_ref2_chl = ('chl', 'Ref2_chl') sst_ref_sst = ('sst', 'sst_reference') sst_sst = ('sst', 'sst') mappings = [chl_ref_chl, chl_ref2_chl, sst_ref_sst, sst_sst] statistics = {} statistics[chl_ref_chl] = processor.calculate_statistics(np.array([11, 9, 11.2, 10.5]), np.array([10, 10, 10, 10]), 'chl', 'Ref_chl') statistics[chl_ref2_chl] = processor.calculate_statistics(np.array([12, 2, 3, 5]), np.array([2, 3, 4, 6]), 'chl', 'Ref2_chl') statistics[sst_ref_sst] = processor.calculate_statistics(np.array([8, 9, 15, 4]), np.array([6, 8, 2, 1]), 'sst', 'Ref_sst') statistics[sst_sst] = processor.calculate_statistics(np.array([8, 10, 2, 55]), np.array([99, 5, 5, 23]), 'sst', 'sst') output = Output() output.csv(mappings, statistics, 10957, matchups=None, target_file='c:\\temp\\output\\benchmark\\test.csv')
def test_compute_statistics_with_extreme_reference_values(self): model_values = np.array([1, 1, 1, 1]) ref_values = np.array([1.1, 2.2, 2.9, 3.7]) stats = calculate_statistics(model_values=model_values, reference_values=ref_values, config=self.config) self.assertAlmostEqual(0.954921, stats['unbiased_rmse'], 5) self.assertAlmostEqual(1.757128, stats['rmse'], 5) self.assertAlmostEqual(59.595959, stats['pbias'], 5) self.assertAlmostEqual(-1.475, stats['bias'], 5) self.assertTrue(np.isnan(stats['corrcoeff'])) self.assertAlmostEqual(1.49908579, stats['reliability_index'], 5) self.assertAlmostEqual(-2.38588, stats['model_efficiency'], 5) self.assertAlmostEqual(1.0, stats['mean'], 5) self.assertAlmostEqual(2.475, stats['ref_mean'], 5) self.assertAlmostEqual(0, stats['stddev'], 5) self.assertAlmostEqual(0.954921, stats['ref_stddev'], 5) self.assertAlmostEqual(0.0, stats['normalised_stddev'], 5) self.assertAlmostEqual(1, stats['median'], 5) self.assertAlmostEqual(2.545, stats['ref_median'], 2) self.assertAlmostEqual(1, stats['p90'], 5) self.assertAlmostEqual(3.46, stats['ref_p90'], 5) self.assertAlmostEqual(1, stats['p95'], 5) self.assertAlmostEqual(3.58, stats['ref_p95'], 2) self.assertAlmostEqual(1, stats['min'], 5) self.assertAlmostEqual(1.1, stats['ref_min'], 5) self.assertAlmostEqual(1, stats['max'], 5) self.assertAlmostEqual(3.7, stats['ref_max'], 5) self.assertAlmostEqual(stats['rmse'] ** 2, stats['bias'] ** 2 + stats['unbiased_rmse'] ** 2, 5)
def test_compute_statistics(self): model_values = np.array(range(1, 5, 1)) # [1, 2, 3, 4] ref_values = np.array([1.1, 2.2, 2.9, 3.7]) stats = calculate_statistics(model_values=model_values, reference_values=ref_values, config=self.config) self.assertIsNone(stats['model_name']) self.assertIsNone(stats['ref_name']) self.assertAlmostEqual(0.192028, stats['unbiased_rmse'], 5) self.assertAlmostEqual(0.193649, stats['rmse'], 5) self.assertAlmostEqual(0.2010936411, stats['normalised_rmse'], 5) self.assertAlmostEqual(-1.0101, stats['pbias'], 5) self.assertAlmostEqual(0.025, stats['bias'], 5) self.assertAlmostEqual(0.99519, stats['corrcoeff'], 5) self.assertAlmostEqual(1.03521, stats['reliability_index'], 5) self.assertAlmostEqual(0.9588759, stats['model_efficiency'], 5) self.assertAlmostEqual(2.5, stats['mean'], 5) self.assertAlmostEqual(2.475, stats['ref_mean'], 5) self.assertAlmostEqual(1.11803, stats['stddev'], 5) self.assertAlmostEqual(0.954921, stats['ref_stddev'], 5) self.assertAlmostEqual(1.170808, stats['normalised_stddev'], 5) self.assertAlmostEqual(2.5, stats['median'], 5) self.assertAlmostEqual(2.55, stats['ref_median'], 5) self.assertAlmostEqual(3.7, stats['p90'], 5) self.assertAlmostEqual(3.46, stats['ref_p90'], 5) self.assertAlmostEqual(3.85, stats['p95'], 5) self.assertAlmostEqual(3.58, stats['ref_p95'], 5) self.assertAlmostEqual(1, stats['min'], 5) self.assertAlmostEqual(1.1, stats['ref_min'], 5) self.assertAlmostEqual(4, stats['max'], 5) self.assertAlmostEqual(3.7, stats['ref_max'], 5) self.assertAlmostEqual(stats['rmse'] ** 2, stats['bias'] ** 2 + stats['unbiased_rmse'] ** 2, 5)
def test_compute_statistics_with_masked_values(self): model_values = ma.array(np.arange(1.0, 5.0, 1), mask=np.array([False, False, True, False])) # [1, 2, --, 4] ref_values = ma.array([1.1, 2.2, 2.9, 3.7]) ref_values, model_values = utils.harmonise(ref_values, model_values) ref_values = ref_values.compressed() model_values = model_values.compressed() stats = calculate_statistics(model_values=model_values, reference_values=ref_values, config=self.config, model_name='kate', ref_name='ref') self.assertEqual('kate', stats['model_name']) self.assertEqual('ref', stats['ref_name']) self.assertAlmostEqual(0.216024, stats['unbiased_rmse'], 5) self.assertAlmostEqual(0.216024, stats['rmse'], 5) self.assertAlmostEqual(6.344131e-15, stats['pbias'], 5) self.assertAlmostEqual(0.0, stats['bias'], 5) self.assertAlmostEqual(0.99484975, stats['corrcoeff'], 5) self.assertAlmostEqual(1.039815, stats['reliability_index'], 5) self.assertAlmostEqual(0.9589041, stats['model_efficiency'], 5) self.assertAlmostEqual(2.33333, stats['mean'], 5) self.assertAlmostEqual(2.33333, stats['ref_mean'], 5) self.assertAlmostEqual(1.24722, stats['stddev'], 5) self.assertAlmostEqual(1.06562, stats['ref_stddev'], 5) self.assertAlmostEqual(1.17041, stats['normalised_stddev'], 5) self.assertAlmostEqual(2, stats['median'], 5) self.assertAlmostEqual(2.2, stats['ref_median'], 5) self.assertAlmostEqual(3.6, stats['p90'], 5) self.assertAlmostEqual(3.4, stats['ref_p90'], 5) self.assertAlmostEqual(3.8, stats['p95'], 5) self.assertAlmostEqual(3.55, stats['ref_p95'], 5) self.assertAlmostEqual(1, stats['min'], 5) self.assertAlmostEqual(1.1, stats['ref_min'], 5) self.assertAlmostEqual(4, stats['max'], 5) self.assertAlmostEqual(3.7, stats['ref_max'], 5) self.assertAlmostEqual(stats['rmse'] ** 2, stats['bias'] ** 2 + stats['unbiased_rmse'] ** 2, 5)
def calculate_statistics(model_name, ref_name, data, config=None): """ Calculates the statistics for the given model and reference variables located in the data file. Calculation will be performed according to the provided configuration. @param model_name: the name of the model variable. @param ref_name: the name of the reference variable. @param data: the input data object. @param config: the optional configuration. @return: a dictionary of statistics. """ if config is None: config = get_default_config() is_gridded = len(data.get_reference_dimensions(ref_name)) > 1 if is_gridded: reference_values, model_values = data.get_values(ref_name, model_name) unit = data.unit(model_name) return processor.calculate_statistics(model_values, reference_values, model_name, ref_name, unit, config) me = MatchupEngine(data, config) matchups = me.find_all_matchups() if config.remove_empty_matchups: matchups = me.remove_empty_matchups(matchups) if len(matchups) == 0: print("No matchups found; maybe allow higher maximum time delta.") return unit = data.unit(model_name) return calculate_statistics_from_matchups(matchups, model_name, ref_name, data, unit, config=None)
def calculate_statistics_from_matchups(matchups, model_name, ref_name, data, unit=None, config=None): """ Calculates the statistics for the given matchups and model and reference variable. Calculation will be performed according to the provided configuration. @param matchups: an iterable of 'Matchup' objects. @param model_name: the name of the model variable. @param ref_name: the name of the reference variable. @param data: the input data object. @param config: the optional configuration. @return: a dictionary of statistics. """ reference_values, model_values = extract_values_from_matchups( matchups, data, model_name, ref_name) return processor.calculate_statistics(model_values, reference_values, model_name, ref_name, unit=unit, config=config)
def test_compute_statistics_with_extreme_model_values(self): model_values = np.array(range(1, 5, 1)) # [1, 2, 3, 4] ref_values = np.array([1, 1, 1, 1]) stats = calculate_statistics(model_values=model_values, reference_values=ref_values, config=self.config) self.assertAlmostEqual(1.118034, stats['unbiased_rmse'], 5) self.assertAlmostEqual(1.870829, stats['rmse'], 5) self.assertAlmostEqual(-150, stats['pbias'], 5) self.assertAlmostEqual(1.5, stats['bias'], 5) self.assertTrue(np.isnan(stats['corrcoeff'])) self.assertAlmostEqual(1.5106421, stats['reliability_index'], 5) self.assertTrue(np.isnan(stats['model_efficiency'])) self.assertAlmostEqual(2.5, stats['mean'], 5) self.assertAlmostEqual(1, stats['ref_mean'], 5) self.assertAlmostEqual(1.11803, stats['stddev'], 5) self.assertAlmostEqual(0.0, stats['ref_stddev'], 5) self.assertTrue(np.isnan, stats['normalised_stddev']) self.assertAlmostEqual(2.5, stats['median'], 5) self.assertAlmostEqual(1, stats['ref_median'], 5) self.assertAlmostEqual(3.7, stats['p90'], 5) self.assertAlmostEqual(1, stats['ref_p90'], 5) self.assertAlmostEqual(3.85, stats['p95'], 5) self.assertAlmostEqual(1, stats['ref_p95'], 5) self.assertAlmostEqual(1, stats['min'], 5) self.assertAlmostEqual(1, stats['ref_min'], 5) self.assertAlmostEqual(4, stats['max'], 5) self.assertAlmostEqual(1, stats['ref_max'], 5) self.assertAlmostEqual(stats['rmse'] ** 2, stats['bias'] ** 2 + stats['unbiased_rmse'] ** 2, 5)
def test_taylor_diagrams(self): values = np.array([0, 15, 2, 3, 15, 8, 5, 3, 9, 11, 12, 1, 7, 7, 6]) reference_values = np.array([9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats = processor.calculate_statistics(model_values=values, reference_values=reference_values, model_name='Kate', unit='megazork') values1 = np.array([2, 14, 8, 6, 10, 9, 6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values1 = np.array([9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats1 = processor.calculate_statistics(model_values=values1, reference_values=reference_values1, model_name='Linda', unit='megazork') values2 = np.array([-2, -14, -8, -6, -10, -9, -6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values2 = np.array([9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats2 = processor.calculate_statistics(model_values=values2, reference_values=reference_values2, model_name='Linda', unit='gimpel/m^3') diagrams = plotter.create_taylor_diagrams((stats, stats1, stats2)) self.assertEqual(2, len(diagrams)) for i, d in enumerate(diagrams): d.write('resources/taylor_test_%s.png' % i)
def calculate_statistics_from_values(model_values, ref_values, model_name=None, ref_name=None, unit=None, config=None): """ Calculates the statistics for two given numpy arrays; the first is considered the model data, the second is considered the reference data. Calculation will be performed according to the provided configuration. Note that the condition len(model_values) == len(ref_values) must hold. @param model_values: numpy array containing the model values. @param ref_values: numpy array containing the reference values. @param config: the optional configuration. @return: a dictionary of statistics. """ return processor.calculate_statistics(model_values, ref_values, model_name, ref_name, unit, config=config)
def test_target_diagram(self): values = np.array([3, 3, 2, 3, 6, 8, 5, 3, 4, 6, 4, 1, 7, 7, 6]) reference_values = np.array( [2, 5, 1, 5, 5, 9, 4, 5, 3, 8, 3, 3, 6, 9, 5]) stats = processor.calculate_statistics( model_values=values, reference_values=reference_values, model_name='Linda', unit='g') values1 = np.array([2, 14, 8, 6, 10, 9, 6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values1 = np.array( [5, 11, 6, 4, 11, 8, 7, 9, 2, 5, 11, -2, 1, 3, 9]) stats1 = processor.calculate_statistics( model_values=values1, reference_values=reference_values1, model_name='Kate', unit='mg') values2 = np.array( [-2, -14, -8, -6, -10, -9, -6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values2 = np.array( [-1, -10, -5, -5, -11, -8, -7, 5, 3, 13, 10, 2, 2, -1, 7]) stats2 = processor.calculate_statistics( model_values=values2, reference_values=reference_values2, model_name='Naomi', unit='kg') # print('ref_stddev: %s' % stats['ref_stddev']) # print('stddev: %s' % stats['stddev']) # print('unbiased rmse: %s' % stats['unbiased_rmse']) # print('corrcoeff: %s' % stats['corrcoeff']) # print('ref_stddev: %s' % stats2['ref_stddev']) # print('stddev: %s' % stats2['stddev']) # print('unbiased rmse: %s' % stats2['unbiased_rmse']) # print('corrcoeff: %s' % stats2['corrcoeff']) diagram = plotter.create_target_diagram((stats, stats1, stats2)) diagram.write('resources/target_test.png')
def test_taylor_diagram(self): values = np.array([0, 15, 2, 3, 15, 8, 5, 3, 9, 11, 12, 1, 7, 7, 6]) reference_values = np.array( [9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats = processor.calculate_statistics( model_values=values, reference_values=reference_values, unit='mg') values1 = np.array([2, 14, 8, 6, 10, 9, 6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values1 = np.array( [9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats1 = processor.calculate_statistics( model_values=values1, reference_values=reference_values1, model_name='Kate', unit='mg') values2 = np.array( [-2, -14, -8, -6, -10, -9, -6, 7, 2, 15, 10, 0, 2, 2, 8]) reference_values2 = np.array( [9, 10, 1, 2, 11, 3, 7, 5, 4, 12, 7, 8, 5, 1, 14]) stats2 = processor.calculate_statistics( model_values=values2, reference_values=reference_values2, unit='g') # print('ref_stddev: %s' % stats['ref_stddev']) # print('stddev: %s' % stats['stddev']) # print('unbiased rmse: %s' % stats['unbiased_rmse']) # print('corrcoeff: %s' % stats['corrcoeff']) # print('ref_stddev: %s' % stats2['ref_stddev']) # print('stddev: %s' % stats2['stddev']) # print('unbiased rmse: %s' % stats2['unbiased_rmse']) # print('corrcoeff: %s' % stats2['corrcoeff']) diagram = plotter.create_taylor_diagrams((stats, stats1))[0] diagram.plot_sample(stats2['corrcoeff'], stats2['stddev'], model_name='Linda', unit=stats2['unit']) diagram.write('resources/taylor_test.png')
def calculate_statistics_from_matchups(matchups, model_name, ref_name, data, unit=None, config=None): """ Calculates the statistics for the given matchups and model and reference variable. Calculation will be performed according to the provided configuration. @param matchups: an iterable of 'Matchup' objects. @param model_name: the name of the model variable. @param ref_name: the name of the reference variable. @param data: the input data object. @param config: the optional configuration. @return: a dictionary of statistics. """ reference_values, model_values = extract_values_from_matchups(matchups, data, model_name, ref_name) return processor.calculate_statistics(model_values, reference_values, model_name, ref_name, unit=unit, config=config)
def test_output_csv(self): chl_ref_chl = ('chl', 'Ref_chl') chl_ref2_chl = ('chl', 'Ref2_chl') sst_ref_sst = ('sst', 'sst_reference') sst_sst = ('sst', 'sst') mappings = [chl_ref_chl, chl_ref2_chl, sst_ref_sst, sst_sst] statistics = {} statistics[chl_ref_chl] = processor.calculate_statistics( np.array([11, 9, 11.2, 10.5]), np.array([10, 10, 10, 10]), 'chl', 'Ref_chl') statistics[chl_ref2_chl] = processor.calculate_statistics( np.array([12, 2, 3, 5]), np.array([2, 3, 4, 6]), 'chl', 'Ref2_chl') statistics[sst_ref_sst] = processor.calculate_statistics( np.array([8, 9, 15, 4]), np.array([6, 8, 2, 1]), 'sst', 'Ref_sst') statistics[sst_sst] = processor.calculate_statistics( np.array([8, 10, 2, 55]), np.array([99, 5, 5, 23]), 'sst', 'sst') output = Output() output.csv(mappings, statistics, 10957, matchups=None, target_file='c:\\temp\\output\\benchmark\\test.csv')
def main(): parsed_args = parse_arguments(sys.argv[1:]) config = Configuration(properties_file_name=parsed_args.config, target_dir=parsed_args.output_dir, target_prefix=parsed_args.prefix) file_handler = setup_logging(config) if parsed_args.reference_file is not None: data = Data(parsed_args.path, parsed_args.reference_file, config.max_cache_size) else: data = Data(parsed_args.path, max_cache_size=config.max_cache_size) output = Output(config=config) matchups = None if data.has_one_dim_ref_var(): me = MatchupEngine(data, config) matchups = me.find_all_matchups() if not matchups: logging.warning('No matchups found. System will exit.') exit(0) if config.remove_empty_matchups: matchups = me.remove_empty_matchups(matchups) if not os.name == 'nt': logging.debug('Memory after matchups have been found: %s' % resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) matchup_count = 0 if matchups is None else len(matchups) collected_statistics = {} density_plot_files = [] target_files = [] density_plots = {} for (model_name, ref_name) in parsed_args.variable_mappings: unit = data.unit(model_name) is_gridded = len(data.get_reference_dimensions(ref_name)) > 1 if is_gridded: reference_values, model_values = data.get_values(ref_name, model_name) matchup_count += ma.count(reference_values) else: reference_values, model_values = utils.extract_values(matchups, data, ref_name, model_name) reference_values, model_values = utils.harmonise(reference_values, model_values) logging.debug('Compressing ref-variable %s' % ref_name) reference_values = reference_values.compressed() logging.debug('Compressing model-variable %s' % model_name) model_values = model_values.compressed() logging.info('Calculating statistics for \'%s\' with \'%s\'' % (model_name, ref_name)) stats = processor.calculate_statistics(model_values, reference_values, model_name, ref_name, unit, config) collected_statistics[(model_name, ref_name)] = stats if config.write_density_plots: axis_min = min(stats['min'], stats['ref_min']) axis_max = max(stats['p90'], stats['ref_p90']) logging.info('Creating density plot for \'%s\' and \'%s\'' % (model_name, ref_name)) density_plots[model_name + ref_name] = output.density_plot(model_name, ref_name, model_values, reference_values, config.density_plot_log_scaled, None, axis_min, axis_max, data.unit(model_name)) if not os.name == 'nt': logging.debug( 'Memory after statistics have been computed: %s' % resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) if config.write_csv: csv_target_file = '%s/%sstatistics.csv' % (parsed_args.output_dir, config.target_prefix) target_files.append(csv_target_file) output.csv(data, parsed_args.variable_mappings, collected_statistics, matchup_count, matchups=matchups, source_file=parsed_args.path, target_file=csv_target_file) logging.info('CSV output written to \'%s\'' % csv_target_file) if matchups is not None: matchup_filename = '%s_matchups.csv' % os.path.splitext(csv_target_file)[0] logging.info('Matchups written to \'%s\'' % matchup_filename) target_files.append(matchup_filename) taylor_target_files = [] if config.write_taylor_diagrams: taylor_target_file = '%s/%staylor.png' % (parsed_args.output_dir, config.target_prefix) written_taylor_diagrams, d = output.taylor(list(collected_statistics.values()), taylor_target_file) del d if written_taylor_diagrams: for written_taylor_diagram in written_taylor_diagrams: logging.info('Taylor diagram written to \'%s\'' % written_taylor_diagram) target_files.append(written_taylor_diagram) taylor_target_files.append(written_taylor_diagram) if config.write_density_plots: for (model_name, ref_name) in parsed_args.variable_mappings: density_target = '%s/density-%s-%s.png' % (parsed_args.output_dir, model_name, ref_name) density_plot_files.append(density_target) target_files.append(density_target) output.write_density_plot(density_plots[model_name + ref_name], density_target) logging.info('Density plot written to \'%s\'' % density_target) target_diagram_file = None if config.write_target_diagram: target_diagram_file = '%s/%starget.png' % (parsed_args.output_dir, config.target_prefix) output.target_diagram(list(collected_statistics.values()), target_diagram_file) logging.info('Target diagram written to \'%s\'' % target_diagram_file) target_files.append(target_diagram_file) if config.write_xhtml: xml_target_file = '%s/%sreport.xml' % (parsed_args.output_dir, config.target_prefix) path = str(os.path.dirname(os.path.realpath(__file__))) + '/../resources/' xsl = path + 'analysis-summary.xsl' css = path + 'styleset.css' xsl_target = '%s/%s' % (parsed_args.output_dir, os.path.basename(xsl)) css_target = '%s/%s' % (parsed_args.output_dir, os.path.basename(css)) output.xhtml(list(collected_statistics.values()), matchup_count, matchups, data, xml_target_file, taylor_target_files, target_diagram_file, density_plot_files) logging.info('XHTML report written to \'%s\'' % xml_target_file) shutil.copy(xsl, parsed_args.output_dir) logging.info('XHTML support file written to \'%s/%s\'' % (parsed_args.output_dir, 'analysis-summary.xsl')) shutil.copy(css, parsed_args.output_dir) logging.info('XHTML support file written to \'%s/%s\'' % (parsed_args.output_dir, 'styleset.xsl')) target_files.append(xml_target_file) target_files.append(xsl_target) target_files.append(css_target) if config.zip: create_zip(target_files, config, file_handler, parsed_args) logging.info('End of process')