def initialize_heaps(data, n_neighbors, leaf_array): graph_heap = make_heap(data.shape[0], 10) search_heap = make_heap(data.shape[0], n_neighbors * 2) tried = set([(-1, -1)]) for n in range(leaf_array.shape[0]): for i in range(leaf_array.shape[1]): if leaf_array[n, i] < 0: break for j in range(i + 1, leaf_array.shape[1]): if leaf_array[n, j] < 0: break if (leaf_array[n, i], leaf_array[n, j]) in tried: continue d = dist(data[leaf_array[n, i]], data[leaf_array[n, j]], *dist_args) unchecked_heap_push(graph_heap, leaf_array[n, i], d, leaf_array[n, j], 1) unchecked_heap_push(graph_heap, leaf_array[n, j], d, leaf_array[n, i], 1) unchecked_heap_push(search_heap, leaf_array[n, i], d, leaf_array[n, j], 1) unchecked_heap_push(search_heap, leaf_array[n, j], d, leaf_array[n, i], 1) tried.add((leaf_array[n, i], leaf_array[n, j])) return graph_heap, search_heap
def init_from_random(n_neighbors, data, query_points, heap, rng_state): for i in range(query_points.shape[0]): indices = rejection_sample(n_neighbors, data.shape[0], rng_state) for j in range(indices.shape[0]): if indices[j] < 0: continue d = dist(data[indices[j]], query_points[i], *dist_args) heap_push(heap, i, d, indices[j], 1) return
def init_from_tree(tree, data, query_points, heap, rng_state): for i in range(query_points.shape[0]): indices = search_flat_tree( query_points[i], tree.hyperplanes, tree.offsets, tree.children, tree.indices, rng_state, ) for j in range(indices.shape[0]): if indices[j] < 0: continue d = dist(data[indices[j]], query_points[i], *dist_args) heap_push(heap, i, d, indices[j], 1) return
def initialized_nnd_search(data, indptr, indices, initialization, query_points): for i in numba.prange(query_points.shape[0]): tried = set(initialization[0, i]) while True: # Find smallest flagged vertex vertex = smallest_flagged(initialization, i) if vertex == -1: break candidates = indices[indptr[vertex]:indptr[vertex + 1]] for j in range(candidates.shape[0]): if (candidates[j] == vertex or candidates[j] == -1 or candidates[j] in tried): continue d = dist(data[candidates[j]], query_points[i], *dist_args) unchecked_heap_push(initialization, i, d, candidates[j], 1) tried.add(candidates[j]) return initialization
def nn_descent( data, n_neighbors, rng_state, max_candidates=50, n_iters=10, delta=0.001, rho=0.5, rp_tree_init=True, leaf_array=None, verbose=False, ): n_vertices = data.shape[0] current_graph = make_heap(data.shape[0], n_neighbors) for i in range(data.shape[0]): indices = rejection_sample(n_neighbors, data.shape[0], rng_state) for j in range(indices.shape[0]): d = dist(data[i], data[indices[j]], *dist_args) heap_push(current_graph, i, d, indices[j], 1) heap_push(current_graph, indices[j], d, i, 1) if rp_tree_init: for n in range(leaf_array.shape[0]): for i in range(leaf_array.shape[1]): if leaf_array[n, i] < 0: break for j in range(i + 1, leaf_array.shape[1]): if leaf_array[n, j] < 0: break d = dist(data[leaf_array[n, i]], data[leaf_array[n, j]], *dist_args) heap_push(current_graph, leaf_array[n, i], d, leaf_array[n, j], 1) heap_push(current_graph, leaf_array[n, j], d, leaf_array[n, i], 1) for n in range(n_iters): if verbose: print("\t", n, " / ", n_iters) candidate_neighbors = build_candidates(current_graph, n_vertices, n_neighbors, max_candidates, rng_state) c = 0 for i in range(n_vertices): for j in range(max_candidates): p = int(candidate_neighbors[0, i, j]) if p < 0 or tau_rand(rng_state) < rho: continue for k in range(max_candidates): q = int(candidate_neighbors[0, i, k]) if (q < 0 or not candidate_neighbors[2, i, j] and not candidate_neighbors[2, i, k]): continue d = dist(data[p], data[q], *dist_args) c += heap_push(current_graph, p, d, q, 1) c += heap_push(current_graph, q, d, p, 1) if c <= delta * n_neighbors * data.shape[0]: break return deheap_sort(current_graph)