def time_opt(self):
     p, x = [], []
     for col in range(1, self.num_points):
         p.extend(self.upper_tri_col(col))
         x.extend(self.diff_col_times(col))
     ker = self.time_kernel_provider(x, p)
     return kernels.Reflect1D(ker)
Exemple #2
0
    def func_opt(self):
        times, probs = self._times_probs_for_func_opt()

        ker = kernels.GaussianBase(times)
        ker.covariance_matrix = 1
        ker.bandwidth = self._h
        ker.weights = probs
        return kernels.Reflect1D(ker)
Exemple #3
0
def test_Reflect1D():
    def kernel(pts):
        return np.exp(-pts*pts)

    k = testmod.Reflect1D(kernel)

    assert k.kernel is kernel
    assert k(5) == pytest.approx(2*np.exp(-25))
    np.testing.assert_allclose(k([5,7]), 2*np.exp([-25, -49]))
Exemple #4
0
def compute_t_marginal(ker):
    """Return the kernel resulting from integrating out all but the first
    coordinate.  Handles the case when a cutoff is applied, but does not apply
    the cutoff in the calculation!

    :param ker: Any of the kernels returned by the providers in this module.
    """
    if isinstance(ker, kernels.Reflect1D):
        return ValueError("Already a one dimensional kernel!")
    already_reflected_axis = None
    if isinstance(ker, kernels.ReflectedKernel):
        already_reflected_axis = ker.reflected_axis
        ker = ker.delegate
    if isinstance(ker, _WrapWithCutoff):
        ker = ker._ker
    k = kernels.marginalise_gaussian_kernel(ker, 2)
    k = kernels.marginalise_gaussian_kernel(k, 1)
    if already_reflected_axis == 0:
        return kernels.Reflect1D(k)
    return k
Exemple #5
0
 def trigger_time_opt(self):
     _, trigs = self._sample_points()
     ker = self.trigger_time_provider(trigs[0], None)
     return kernels.Reflect1D(ker)
Exemple #6
0
 def trigger_time_opt(self):
     pts, w = self._cached_trigger_data()
     kt = self.trigger_time_provider(pts[0], w)
     return kernels.Reflect1D(kt)
Exemple #7
0
 def func_opt(self):
     times, probs = self._times_probs_for_func_opt()
     ker = kernels.GaussianNearestNeighbour(times, self._knn)
     ker.weights = probs
     return kernels.Reflect1D(ker)
 def time_opt(self):
     times = self._sample_triggers()[0]
     ker = self.time_kernel_provider(times, None)
     return kernels.Reflect1D(ker)