Exemple #1
0
  def test_braess_paradox(self):
    """Test that Braess paradox can be reproduced with the mean field game."""
    num_player = 8
    braess_network = dynamic_routing_utils.Network(
        {
            "O": "A",
            "A": ["B", "C"],
            "B": ["C", "D"],
            "C": ["D"],
            "D": ["E"],
            "E": []
        },
        node_position={
            "O": (0, 0),
            "A": (1, 0),
            "B": (2, 1),
            "C": (2, -1),
            "D": (3, 0),
            "E": (4, 0)
        },
        bpr_a_coefficient={
            "O->A": 0,
            "A->B": 1.0,
            "A->C": 0,
            "B->C": 0,
            "B->D": 0,
            "C->D": 1.0,
            "D->E": 0
        },
        bpr_b_coefficient={
            "O->A": 1.0,
            "A->B": 1.0,
            "A->C": 1.0,
            "B->C": 1.0,
            "B->D": 1.0,
            "C->D": 1.0,
            "D->E": 1.0
        },
        capacity={
            "O->A": num_player,
            "A->B": num_player,
            "A->C": num_player,
            "B->C": num_player,
            "B->D": num_player,
            "C->D": num_player,
            "D->E": num_player
        },
        free_flow_travel_time={
            "O->A": 0,
            "A->B": 1.0,
            "A->C": 2.0,
            "B->C": 0.25,
            "B->D": 2.0,
            "C->D": 1.0,
            "D->E": 0
        })

    demand = [
        dynamic_routing_utils.Vehicle("O->A", "D->E") for _ in range(num_player)
    ]
    game = dynamic_routing.DynamicRoutingGame(
        {"time_step_length": 0.125, "max_num_time_step": 40},
        network=braess_network,
        vehicles=demand)

    class TruePathPolicy(policy.Policy):

      def __init__(self, game):
        super().__init__(game, list(range(num_player)))
        self._path = {}

      def action_probabilities(self, state, player_id=None):
        assert player_id is not None
        legal_actions = state.legal_actions(player_id)
        if not legal_actions:
          return {dynamic_routing_utils.NO_POSSIBLE_ACTION: 1.0}
        elif len(legal_actions) == 1:
          return {legal_actions[0]: 1.0}
        else:
          if legal_actions[0] == 2:
            if self._path[player_id] in ["top", "middle"]:
              return {2: 1.0}
            elif self._path[player_id] == "bottom":
              return {3: 1.0}
            else:
              raise ValueError()
          elif legal_actions[0] == 4:
            if self._path[player_id] == "top":
              return {5: 1.0}
            elif self._path[player_id] == "middle":
              return {4: 1.0}
            else:
              raise ValueError()
        raise ValueError(f"{legal_actions} is not correct.")

    class NashEquilibriumBraess(TruePathPolicy):

      def __init__(self, game):
        super().__init__(game)
        for player_id in range(num_player):
          if player_id % 2 == 0:
            self._path[player_id] = "middle"
          if player_id % 4 == 1:
            self._path[player_id] = "top"
          if player_id % 4 == 3:
            self._path[player_id] = "bottom"

    class SocialOptimumBraess(NashEquilibriumBraess):

      def __init__(self, game):
        super().__init__(game)
        for player_id in range(num_player):
          if player_id % 2 == 0:
            self._path[player_id] = "top"
          if player_id % 2 == 1:
            self._path[player_id] = "bottom"

    ne_policy = NashEquilibriumBraess(game)
    # TODO(cabannes): debug issue with nash conv computation and uncomment the
    # following line.
    # self.assertEqual(exploitability.nash_conv(game, ne_policy), 0.0)
    self.assertSequenceAlmostEqual(
        -expected_game_score.policy_value(game.new_initial_state(), ne_policy),
        [3.75] * num_player)

    so_policy = SocialOptimumBraess(game)
    # TODO(cabannes): debug issue with nash conv computation and uncomment the
    # following line.
    # self.assertEqual(exploitability.nash_conv(game, so_policy), 0.125)
    self.assertSequenceAlmostEqual(
        -expected_game_score.policy_value(game.new_initial_state(), so_policy),
        [3.5] * num_player)
 def setUp(self):
     """Create a network O->A->D for testing."""
     super().setUp()
     self.network = utils.Network({"O": ["A"], "A": ["D"], "D": []})
Exemple #3
0
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Default data for dynamic routing game."""

from open_spiel.python.games import dynamic_routing_utils

LINE_NETWORK = dynamic_routing_utils.Network({
    "bef_O": "O",
    "O": ["A"],
    "A": ["D"],
    "D": ["aft_D"],
    "aft_D": []
})

LINE_NETWORK_VEHICLES_DEMAND = [
    dynamic_routing_utils.Vehicle("bef_O->O", "D->aft_D") for _ in range(2)
]

LINE_NETWORK_OD_DEMAND = [
    dynamic_routing_utils.OriginDestinationDemand("bef_O->O", "D->aft_D", 0,
                                                  100)
]

BRAESS_NUM_PLAYER = 5
BRAESS_NETWORK = dynamic_routing_utils.Network(
Exemple #4
0
def create_braess_network(capacity):
    graph_dict = {
        "A": {
            "connection": {
                "B": {
                    "a": 0,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 0
                }
            },
            "location": [0, 0]
        },
        "B": {
            "connection": {
                "C": {
                    "a": 1.0,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 1.0
                },
                "D": {
                    "a": 0,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 2.0
                }
            },
            "location": [1, 0]
        },
        "C": {
            "connection": {
                "D": {
                    "a": 0,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 0.25
                },
                "E": {
                    "a": 0,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 2.0
                }
            },
            "location": [2, 1]
        },
        "D": {
            "connection": {
                "E": {
                    "a": 1,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 1.0
                }
            },
            "location": [2, -1]
        },
        "E": {
            "connection": {
                "F": {
                    "a": 0,
                    "b": 1.0,
                    "capacity": capacity,
                    "free_flow_travel_time": 0.0
                }
            },
            "location": [3, 0]
        },
        "F": {
            "connection": {},
            "location": [4, 0]
        }
    }
    adjacency_list = {
        key: list(value["connection"].keys())
        for key, value in graph_dict.items()
    }
    bpr_a_coefficient = {}
    bpr_b_coefficient = {}
    capacity = {}
    free_flow_travel_time = {}
    for o_node, value_dict in graph_dict.items():
        for d_node, section_dict in value_dict["connection"].items():
            road_section = dynamic_routing_utils._nodes_to_road_section(
                origin=o_node, destination=d_node)
            bpr_a_coefficient[road_section] = section_dict["a"]
            bpr_b_coefficient[road_section] = section_dict["b"]
            capacity[road_section] = section_dict["capacity"]
            free_flow_travel_time[road_section] = section_dict[
                "free_flow_travel_time"]
    node_position = {
        key: value["location"]
        for key, value in graph_dict.items()
    }
    return dynamic_routing_utils.Network(
        adjacency_list,
        node_position=node_position,
        bpr_a_coefficient=bpr_a_coefficient,
        bpr_b_coefficient=bpr_b_coefficient,
        capacity=capacity,
        free_flow_travel_time=free_flow_travel_time)
Exemple #5
0
def create_sioux_falls_network():
    sioux_falls_adjacency_list = {}
    sioux_falls_node_position = {}
    bpr_a_coefficient = {}
    bpr_b_coefficient = {}
    capacity = {}
    free_flow_travel_time = {}

    content = open("./SiouxFalls_node.csv", "r").read()
    for line in content.split("\n")[1:]:
        row = line.split(",")
        sioux_falls_node_position[row[0]] = [
            int(row[1]) / 1e5, int(row[2]) / 1e5
        ]
        sioux_falls_node_position[f"bef_{row[0]}"] = [
            int(row[1]) / 1e5, int(row[2]) / 1e5
        ]
        sioux_falls_node_position[f"aft_{row[0]}"] = [
            int(row[1]) / 1e5, int(row[2]) / 1e5
        ]
        sioux_falls_adjacency_list[f"bef_{row[0]}"] = [row[0]]
        sioux_falls_adjacency_list[row[0]] = [f"aft_{row[0]}"]
        sioux_falls_adjacency_list[f"aft_{row[0]}"] = []

        bpr_a_coefficient[f"{row[0]}->aft_{row[0]}"] = 0.0
        bpr_b_coefficient[f"{row[0]}->aft_{row[0]}"] = 1.0
        capacity[f"{row[0]}->aft_{row[0]}"] = 0.0
        free_flow_travel_time[f"{row[0]}->aft_{row[0]}"] = 0.0

        bpr_a_coefficient[f"bef_{row[0]}->{row[0]}"] = 0.0
        bpr_b_coefficient[f"bef_{row[0]}->{row[0]}"] = 1.0
        capacity[f"bef_{row[0]}->{row[0]}"] = 0.0
        free_flow_travel_time[f"bef_{row[0]}->{row[0]}"] = 0.0

    content = open("./SiouxFalls_net.csv", "r").read()
    for l in content.split("\n")[1:-1]:
        _, origin, destination, a0, a1, a2, a3, a4 = l.split(",")
        assert all(int(x) == 0 for x in [a1, a2, a3])
        sioux_falls_adjacency_list[origin].append(destination)
        road_section = f"{origin}->{destination}"
        bpr_a_coefficient[road_section] = float(a4)
        bpr_b_coefficient[road_section] = 4.0
        capacity[road_section] = 1.0
        free_flow_travel_time[road_section] = float(a0)

    sioux_falls_od_demand = []
    content = open("./SiouxFalls_od.csv", "r").read()
    for line in content.split("\n")[1:-1]:
        row = line.split(",")
        sioux_falls_od_demand.append(
            dynamic_routing_utils.OriginDestinationDemand(
                f"bef_{row[0]}->{row[0]}", f"{row[1]}->aft_{row[1]}", 0,
                float(row[2])))

    return dynamic_routing_utils.Network(
        sioux_falls_adjacency_list,
        node_position=sioux_falls_node_position,
        bpr_a_coefficient=bpr_a_coefficient,
        bpr_b_coefficient=bpr_b_coefficient,
        capacity=capacity,
        free_flow_travel_time=free_flow_travel_time), sioux_falls_od_demand
Exemple #6
0
def create_series_parallel_network(num_network_in_series,
                                   time_step_length=1,
                                   capacity=1):
    i = 0
    origin = "A_0->B_0"
    graph_dict = {}
    while i < num_network_in_series:
        tt_up = random.random() + time_step_length
        tt_down = random.random() + time_step_length
        graph_dict.update({
            f"A_{i}": {
                "connection": {
                    f"B_{i}": {
                        "a": 0,
                        "b": 1.0,
                        "capacity": capacity,
                        "free_flow_travel_time": time_step_length
                    }
                },
                "location": [0 + 3 * i, 0]
            },
            f"B_{i}": {
                "connection": {
                    f"C_{i}": {
                        "a": 1.0,
                        "b": 1.0,
                        "capacity": capacity,
                        "free_flow_travel_time": tt_up
                    },
                    f"D_{i}": {
                        "a": 1.0,
                        "b": 1.0,
                        "capacity": capacity,
                        "free_flow_travel_time": tt_down
                    }
                },
                "location": [1 + 3 * i, 0]
            },
            f"C_{i}": {
                "connection": {
                    f"A_{i+1}": {
                        "a": 0,
                        "b": 1.0,
                        "capacity": capacity,
                        "free_flow_travel_time": time_step_length
                    }
                },
                "location": [2 + 3 * i, 1]
            },
            f"D_{i}": {
                "connection": {
                    f"A_{i+1}": {
                        "a": 0,
                        "b": 1.0,
                        "capacity": capacity,
                        "free_flow_travel_time": time_step_length
                    }
                },
                "location": [2 + 3 * i, -1]
            }
        })
        i += 1
    graph_dict[f"A_{i}"] = {
        "connection": {
            "END": {
                "a": 0,
                "b": 1.0,
                "capacity": capacity,
                "free_flow_travel_time": time_step_length
            }
        },
        "location": [0 + 3 * i, 0]
    }
    graph_dict["END"] = {"connection": {}, "location": [1 + 3 * i, 0]}
    time_horizon = int(3.0 * (num_network_in_series + 1) / time_step_length)
    destination = f"A_{i}->END"
    adjacency_list = {
        key: list(value["connection"].keys())
        for key, value in graph_dict.items()
    }
    bpr_a_coefficient = {}
    bpr_b_coefficient = {}
    capacity = {}
    free_flow_travel_time = {}
    for o_node, value_dict in graph_dict.items():
        for d_node, section_dict in value_dict["connection"].items():
            road_section = dynamic_routing_utils._nodes_to_road_section(
                origin=o_node, destination=d_node)
            bpr_a_coefficient[road_section] = section_dict["a"]
            bpr_b_coefficient[road_section] = section_dict["b"]
            capacity[road_section] = section_dict["capacity"]
            free_flow_travel_time[road_section] = section_dict[
                "free_flow_travel_time"]
    node_position = {
        key: value["location"]
        for key, value in graph_dict.items()
    }
    return dynamic_routing_utils.Network(
        adjacency_list,
        node_position=node_position,
        bpr_a_coefficient=bpr_a_coefficient,
        bpr_b_coefficient=bpr_b_coefficient,
        capacity=capacity,
        free_flow_travel_time=free_flow_travel_time
    ), origin, destination, time_horizon