def main(): parser = argparse.ArgumentParser() parser.add_argument("enriched_file", help=ARG_HELP_STRINGS["enriched_file"]) args = parser.parse_args() header, content = oat.get_csv_file_content(args.enriched_file, enc="utf-8", force_header=True) header_line = header[0] core_content = [list(header_line)] ta_content = [list(header_line) + ["agreement"]] print(core_content) print(ta_content) for line in content: if line[4] == "TRUE" and line[5] in PUBLISHER_LIST: core_content.append(list(EMPTY_LINE_CORE)) ta_content.append(line + [AGREEMENT_NAME]) else: core_content.append(line) ta_content.append(list(EMPTY_LINE_TA)) with open("out_orig.csv", "w") as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(core_content) with open("out_deal_wiley.csv", "w") as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(ta_content)
def main(): with open("harvest_list.csv", "r") as harvest_list: reader = DictReader(harvest_list) for line in reader: basic_url = line["basic_url"] if line["active"] == "TRUE": oat.print_g("Starting harvest from source " + basic_url) oai_set = line["oai_set"] if len(line["oai_set"]) > 0 else None prefix = line["metadata_prefix"] if len(line["metadata_prefix"]) > 0 else None processing = line["processing"] if len(line["processing"]) > 0 else None directory = os.path.join("..", line["directory"]) articles = oat.oai_harvest(basic_url, prefix, oai_set, processing) harvest_file_path = os.path.join(directory, "all_harvested_articles.csv") enriched_file_path = os.path.join(directory, "all_harvested_articles_enriched.csv") new_article_dicts, header = integrate_changes(articles, harvest_file_path, False) integrate_changes(articles, enriched_file_path, True) deal_wiley_path = os.path.join(directory, "all_harvested_articles_enriched_deal_wiley.csv") if os.path.isfile(deal_wiley_path): integrate_changes(articles, deal_wiley_path, True) if header is None: # if no header was returned, an "all_harvested" file doesn't exist yet header = list(oat.OAI_COLLECTION_CONTENT.keys()) new_articles = [header] for article_dict in new_article_dicts: new_articles.append([article_dict[key] for key in header]) now = datetime.datetime.now() date_string = now.strftime("%Y_%m_%d") file_name = "new_articles_" + date_string + ".csv" target = os.path.join(directory, file_name) with open(target, "w") as t: writer = oat.OpenAPCUnicodeWriter(t, openapc_quote_rules=True, has_header=True) writer.write_rows(new_articles) else: oat.print_y("Skipping inactive source " + basic_url)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) codec_msg = "Encoding '{}' found in Python's codec collection as '{}'" oat.print_g(codec_msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print ("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print ("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] header, content = oat.get_csv_file_content(args.csv_file, enc) line_num = 1 for line in content: publisher = line[5] journal = line[6] journal_new = oat.get_unified_journal_title(journal) publisher_new = oat.get_unified_publisher_name(publisher) if publisher_new != publisher: line[5] = publisher_new msg = u"Line {}: Updated publisher name ({} -> {})" oat.print_g(msg.format(line_num, publisher, publisher_new)) if journal_new != journal: line[6] = journal_new msg = u"Line {}: Updated journal_full_title ({} -> {})" oat.print_g(msg.format(line_num, journal, journal_new)) line_num += 1 with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, True) writer.write_rows(header + content)
def main(): parser = argparse.ArgumentParser() parser.add_argument("source_file", help=ARG_HELP_STRINGS["source_file"]) parser.add_argument("journaltocs_user", help=ARG_HELP_STRINGS["journaltocs_user"]) parser.add_argument("-i", "--integrate", action="store_true", help=ARG_HELP_STRINGS["integrate"]) parser.add_argument("-m", "--max_lookups", type=int, default=100, help=ARG_HELP_STRINGS["max_lookups"]) args = parser.parse_args() analysed_journals = {} modified_content = [] lookups = 0 header, content = oat.get_csv_file_content(args.source_file, enc="utf-8", force_header=True) header_line = header[0] modified_content = [list(header_line)] for line in content: if not oat.has_value(line[6]): #journal_full_title modified_content.append(line) continue if not oat.has_value(line[4]): #is_hybrid title = line[6] oat.print_y('Looking up journal {}'.format(title)) if title not in analysed_journals: if lookups < args.max_lookups: hybrid_status = get_hybrid_status(line, args.journaltocs_user) if hybrid_status is not None: analysed_journals[title] = hybrid_status else: analysed_journals[title] = "NA" lookups += 1 line[4] = analysed_journals[title] else: oat.print_r("Maximum number of lookups reached!") else: line[4] = analysed_journals[title] modified_content.append(line) with open("out.csv", "w") as out: if args.integrate: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(modified_content) else: out.write("journal_full_title,is_hybrid\n") for key, value in analysed_journals.items(): out.write(key + "," + value + "\n")
def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--integrate", help=ARG_HELP_STRINGS["integrate"], action="store_true") parser.add_argument("-o", "--output", help=ARG_HELP_STRINGS["output"], action="store_true") args = parser.parse_args() with open("harvest_list.csv", "r") as harvest_list: reader = DictReader(harvest_list) for line in reader: basic_url = line["basic_url"] if line["active"] == "TRUE": oat.print_g("Starting harvest from source " + basic_url) oai_set = line["oai_set"] if len(line["oai_set"]) > 0 else None prefix = line["metadata_prefix"] if len( line["metadata_prefix"]) > 0 else None processing = line["processing"] if len( line["processing"]) > 0 else None directory = os.path.join("..", line["directory"]) out_file_suffix = os.path.basename( line["directory"]) if args.output else None articles = oat.oai_harvest(basic_url, prefix, oai_set, processing, out_file_suffix) harvest_file_path = os.path.join(directory, "all_harvested_articles.csv") enriched_file_path = os.path.join( directory, "all_harvested_articles_enriched.csv") new_article_dicts, header = integrate_changes( articles, harvest_file_path, False, not args.integrate) integrate_changes(articles, enriched_file_path, True, not args.integrate) if header is None: # if no header was returned, an "all_harvested" file doesn't exist yet header = list(oat.OAI_COLLECTION_CONTENT.keys()) new_articles = [header] for article_dict in new_article_dicts: new_articles.append([article_dict[key] for key in header]) now = datetime.datetime.now() date_string = now.strftime("%Y_%m_%d") file_name = "new_articles_" + date_string + ".csv" target = os.path.join(directory, file_name) with open(target, "w") as t: writer = oat.OpenAPCUnicodeWriter(t, openapc_quote_rules=True, has_header=True) writer.write_rows(new_articles) else: oat.print_y("Skipping inactive source " + basic_url)
def integrate_changes(articles, file_path, enriched_file=False): ''' Update existing entries in a previously created harvest file. Args: articles: A list of article dicts, as retured by openapc_toolkit.oai_harvest() file_path: Path to the CSV file the new values should be integrated into. enriched_file: If true, columns which are overwritten during enrichment will not be updated Returns: A tuple. The first element is a reduced list of article dicts, containing those which did not find a matching DOI in the file (Order preserved). The second element is the list of column headers encountered in the harvest file. ''' if not os.path.isfile(file_path): return (articles, None) enriched_blacklist = [ "institution", "publisher", "journal_full_title", "issn", "license_ref", "pmid" ] article_dict = OrderedDict() for article in articles: # This is possible because currently all repos use a local ID/record url, but it's just # a workaround. We might have to change to OAI record IDs later. url = article["url"] if oat.has_value(url): article_dict[url] = article updated_lines = [] fieldnames = None with open(file_path, "r") as f: reader = DictReader(f) fieldnames = reader.fieldnames updated_lines.append(list(fieldnames)) #header start_msg = "Integrating changes in harvest data into existing file {}" oat.print_g(start_msg.format(file_path)) for line in reader: url = line["url"] line_num = reader.reader.line_num msg = "Line {}: Checking for changes ({})" oat.print_b(msg.format(line_num, url)) if url in article_dict: for key, value in article_dict[url].items(): if enriched_file and key in enriched_blacklist: continue if key in line and value != line[key]: update_msg = 'Updating value in column {} ("{}" -> "{}")' oat.print_g(update_msg.format(key, line[key], value)) line[key] = value del (article_dict[url]) updated_line = [line[key] for key in fieldnames] updated_lines.append(updated_line) else: remove_msg = "URL {} no longer found in harvest data, removing article" oat.print_r(remove_msg.format(url)) with open(file_path, "w") as f: mask = oat.OPENAPC_STANDARD_QUOTEMASK if enriched_file else None writer = oat.OpenAPCUnicodeWriter(f, quotemask=mask, openapc_quote_rules=True, has_header=True) writer.write_rows(updated_lines) return (article_dict.values(), fieldnames)
def integrate_changes(articles, file_path, enriched_file=False, dry_run=False): ''' Update existing entries in a previously created harvest file. Args: articles: A list of article dicts, as retured by openapc_toolkit.oai_harvest() file_path: Path to the CSV file the new values should be integrated into. enriched_file: If true, columns which are overwritten during enrichment will not be updated dry_run: Do not make any changes to the file (but still report changes and return the list of unencountered articles) Returns: A tuple. The first element is a reduced list of article dicts, containing those which did not find a matching DOI in the file (Order preserved). The second element is the list of column headers encountered in the harvest file. ''' messages = { 'wet': { 'start': 'Integrating changes in harvest data into existing file {}', 'line_change': 'Line {}: Updating value in column {} ("{}" -> "{}")', 'remove': 'PID {} no longer found in harvest data, removing article', }, 'dry': { 'start': 'Dry Run: Comparing harvest data to existing file {}', 'line_change': 'Line {} ({}): Change in column {} ("{}" -> "{}")', 'remove': 'PID {} no longer found in harvest data, article would be removed', } } messages = messages['dry'] if dry_run else messages['wet'] if not os.path.isfile(file_path): return (articles, None) enriched_blacklist = [ "institution", "publisher", "journal_full_title", "issn", "license_ref", "pmid" ] article_dict = OrderedDict() for article in articles: # Harvested articles use OAI record IDs in the url field as PID. url = article["url"] if oat.has_value(url): article_dict[url] = article updated_lines = [] fieldnames = None with open(file_path, "r") as f: reader = DictReader(f) fieldnames = reader.fieldnames updated_lines.append(list(fieldnames)) #header oat.print_y(messages["start"].format(file_path)) for line in reader: url = line["url"] if not oat.has_value(line["institution"]): # Do not change empty lines updated_lines.append([line[key] for key in fieldnames]) continue line_num = reader.reader.line_num if url in article_dict: for key, value in article_dict[url].items(): if enriched_file and key in enriched_blacklist: continue if key in line and value != line[key]: oat.print_g(messages["line_change"].format( line_num, line["url"], key, line[key], value)) line[key] = value del (article_dict[url]) updated_line = [line[key] for key in fieldnames] updated_lines.append(updated_line) else: oat.print_r(messages["remove"].format(url)) if not dry_run: with open(file_path, "w") as f: mask = oat.OPENAPC_STANDARD_QUOTEMASK if enriched_file else None writer = oat.OpenAPCUnicodeWriter(f, quotemask=mask, openapc_quote_rules=True, has_header=True) writer.write_rows(updated_lines) return (article_dict.values(), fieldnames)
def main(): parser = argparse.ArgumentParser() parser.add_argument("apc_file", help=ARG_HELP_STRINGS["apc_file"]) parser.add_argument("issn_l_file", help=ARG_HELP_STRINGS["issn_l_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) print("Encoding '{}' found in Python's codec collection " + "as '{}'").format(args.encoding, codec.name) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() result = oat.analyze_csv_file(args.apc_file, 500) if result["success"]: csv_analysis = result["data"] print csv_analysis else: print result["error_msg"] sys.exit() if enc is None: enc = csv_analysis.enc if enc is None: print("Error: No encoding given for CSV file and automated " + "detection failed. Please set the encoding manually via the " + "--enc argument") sys.exit() dialect = csv_analysis.dialect csv_file = open(args.apc_file, "r") reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) oat.print_g("Preparing mapping table...") itself = other = 0 issn_l_re = re.compile( "^(?P<issn>\d{4}-\d{3}[\dxX])\t(?P<issn_l>\d{4}-\d{3}[\dxX])$") issn_l_file = open(args.issn_l_file, "r") issn_l_dict = {} for i, line in enumerate(issn_l_file): if i % 100000 == 0: print str(i) + " lines processed." match = issn_l_re.match(line) if match: match_dict = match.groupdict() issn_l_dict[match_dict['issn']] = match_dict['issn_l'] if match_dict['issn'] == match_dict['issn_l']: itself += 1 else: other += 1 print str(itself) + " ISSNs pointing to itself as ISSN-L, " + str( other) + " to another value." oat.print_g("Starting enrichment...") issn_matches = issn_p_matches = issn_e_matches = unmatched = different = 0 enriched_lines = [] for line in reader: if len(line) == 0: enriched_lines.append(line) continue issn = reformat_issn(line[7]) issn_p = reformat_issn(line[8]) issn_e = reformat_issn(line[9]) target = None if issn in issn_l_dict: target = issn_l_dict[issn] line[10] = target issn_matches += 1 elif issn_p in issn_l_dict: target = issn_l_dict[issn_p] line[10] = target issn_p_matches += 1 elif issn_e in issn_l_dict: target = issn_l_dict[issn_e] line[10] = target issn_e_matches += 1 else: unmatched += 1 if target is not None and target not in [issn, issn_p, issn_e]: different += 1 enriched_lines.append(line) print "{} issn_l values mapped by issn, {} by issn_p, {} by issn_e. {} could not be assigned.\n In {} cases the ISSN-L was different from all existing ISSN values".format( issn_matches, issn_p_matches, issn_e_matches, unmatched, different) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, False) writer.write_rows(enriched_lines)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("index", type=int, help=ARG_HELP_STRINGS["index"]) parser.add_argument("-v", "--value", help=ARG_HELP_STRINGS["value"]) parser.add_argument("-f", "--file", help=ARG_HELP_STRINGS["file"]) parser.add_argument("-d", "--full_delete", action="store_true", help=ARG_HELP_STRINGS["full_delete"]) parser.add_argument("-i", "--ignore_case", action="store_true", help=ARG_HELP_STRINGS["ignore_case"]) parser.add_argument("-r", "--results_file", action="store_true", help=ARG_HELP_STRINGS["results_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() if args.value is None and args.file is None: parser.error("Either a single value (-v option) or a file of " + "multiple values (-f option) must be given.") values = [] if args.file: if not os.path.isfile(args.file): print("Error: '" + args.file + "' is no valid file!") sys.exit() with open(args.file, "r") as f: for line in f: if len(line) > 0: value = line.strip("\r\n") if args.ignore_case: values.append(value.lower()) else: values.append(value) oat.print_g(str(len(values)) + " values read from file") if args.value is not None: if args.ignore_case: values.append(args.value.lower()) else: values.append(args.value) if args.file: oat.print_y("Value argument given in addition to file " + "argument, adding value to file imports...") quote_rules = args.openapc_quote_rules enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" print(msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() header, content = oat.get_csv_file_content(args.csv_file, enc) mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] empty_line = ['' for element in content[0]] column_name = "column " + str(args.index) if header: header_line = header[0] column_name = header_line[args.index] empty_line = ['' for element in header_line] msg = u"Performing line deletion on condition '{}' in {}".format( column_name, values) oat.print_g(msg) modified_content = [] deleted_lines = [] num_total_lines = num_deleted_lines = 0 for line in content: if len(line) == 0: continue num_total_lines += 1 current_value = line[args.index] if args.ignore_case: current_value = current_value.lower() if current_value not in values: modified_content.append(line) else: num_deleted_lines += 1 if not args.full_delete: modified_content.append(list(empty_line)) if args.results_file: deleted_lines.append(line) msg = u"Process complete, deleted {} out of {} total lines" oat.print_g(msg.format(num_deleted_lines, num_total_lines)) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, False) writer.write_rows(copy.deepcopy(header) + modified_content) if args.results_file and len(deleted_lines) > 0: with open('del.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, False) writer.write_rows(copy.deepcopy(header) + deleted_lines)
def main(): parser = argparse.ArgumentParser() parser.add_argument("source_file") parser.add_argument("source_column", type=int) parser.add_argument("currency_column", type=int) parser.add_argument("period_column", type=int) parser.add_argument("target_column", type=int) parser.add_argument("-f", "--force_overwrite", action="store_true") parser.add_argument("-l", "--locale", help=ARG_HELP_STRINGS["locale"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print ("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" oat.print_g(msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print ("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() if args.locale: norm = locale.normalize(args.locale) if norm != args.locale: msg = "locale '{}' not found, normalised to '{}'".format( args.locale, norm) oat.print_y(msg) try: loc = locale.setlocale(locale.LC_ALL, norm) oat.print_g("Using locale " + loc) except locale.Error as loce: msg = "Setting locale to {} failed: {}".format(norm, loce.message) oat.print_r(msg) sys.exit() header, content = oat.get_csv_file_content(args.source_file, enc, True) fieldnames = header.pop() modified_content = [] line_num = 0 for column_type in ["source_column", "currency_column", "period_column", "target_column"]: index = getattr(args, column_type) msg = "Column {} ('{}') is the {}." oat.print_g(msg.format(index, fieldnames[index], column_type)) start = input("\nStart conversion? (y/n):") while start not in ["y", "n"]: start = input("Please type 'y' or 'n':") if start == "n": sys.exit() for line in content: line_num += 1 if not oat.has_value(line[args.source_column]): oat.print_y("WARNING: No source value found in line " + str(line_num) + ", skipping...") modified_content.append(line) continue monetary_value = None try: monetary_value = locale.atof(line[args.source_column]) except ValueError: msg = "WARNING: Could not extract a valid monetary value from source column in line {} ('{}'), skipping..." oat.print_y(msg.format(line_num, line[args.source_column])) modified_content.append(line) continue currency = line[args.currency_column] if currency == "EUR": msg = "WARNING: Currency in line {} is already EUR, skipping..." oat.print_y(msg.format(line_num)) line[args.target_column] = line[args.source_column] modified_content.append(line) continue if not oat.has_value(currency): msg = "WARNING: Could not extract a valid currency indicator from currency column in line {} ('{}'), skipping..." oat.print_y(msg.format(line_num, currency)) modified_content.append(line) continue period = line[args.period_column] frequency = get_frequency(period) if frequency is None: msg = "WARNING: Could not extract a valid date string from period column in line {} ('{}'), skipping..." oat.print_y(msg.format(line_num, period)) modified_content.append(line) continue if currency not in EXCHANGE_RATES[frequency]: msg = 'No exchange rates ({}) found for currency "{}", querying ECB data warehouse...' oat.print_b(msg.format(frequency, currency)) rates = oat.get_euro_exchange_rates(currency, frequency) EXCHANGE_RATES[frequency][currency] = rates rate = EXCHANGE_RATES[frequency][currency].get(period) if rate is None and frequency == "A": rate = _calulate_preliminary_annual_average(period, currency) if rate: EXCHANGE_RATES[frequency][currency][period] = rate if rate is None: if frequency != "D": msg = "Error: No conversion rate found for currency {} for period {} (line {}), aborting..." oat.print_r(msg.format(currency, period, line_num)) sys.exit() day_retries = 0 while rate is None: msg = "Warning: No conversion rate found for currency {} for period {} (line {}), trying next day..." oat.print_y(msg.format(currency, period, line_num)) period = get_next_day(period) rate = EXCHANGE_RATES[frequency][currency].get(period) day_retries += 1 if day_retries > 5: msg = "Error: Look-ahead limit for days exceeded, aborting..." oat.print_r(msg) sys.exit() euro_value = round(monetary_value/float(rate), 2) line[args.target_column] = str(euro_value) msg = "Line {}: {} exchange rate ({}) for date {} is {} -> {} / {} = {} EUR" msg = msg.format(line_num, currency, frequency, period, rate, monetary_value, rate, euro_value) oat.print_g(msg) modified_content.append(line) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, True) writer.write_rows([fieldnames] + modified_content)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("-O", "--offsetting_mode", help=ARG_HELP_STRINGS["offsetting"]) parser.add_argument("-b", "--bypass-cert-verification", action="store_true", help=ARG_HELP_STRINGS["bypass"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-f", "--force", action="store_true", help=ARG_HELP_STRINGS["force"]) parser.add_argument("-i", "--ignore-header", action="store_true", help=ARG_HELP_STRINGS["ignore_header"]) parser.add_argument("-j", "--force-header", action="store_true", help=ARG_HELP_STRINGS["force_header"]) parser.add_argument("-l", "--locale", help=ARG_HELP_STRINGS["locale"]) parser.add_argument("-a", "--add-unknown-columns", action="store_true", help=ARG_HELP_STRINGS["unknown_columns"]) parser.add_argument("-d", "--dialect", choices=["excel", "excel-tab", "unix"], help=ARG_HELP_STRINGS["dialect"]) parser.add_argument("-v", "--verbose", action="store_true", help=ARG_HELP_STRINGS["verbose"]) parser.add_argument("-o", "--overwrite", action="store_true", help=ARG_HELP_STRINGS["overwrite"]) parser.add_argument("-u", "--update", action="store_true", help=ARG_HELP_STRINGS["update"]) parser.add_argument("-r", "--round_monetary", action="store_true", help=ARG_HELP_STRINGS["round_monetary"]) parser.add_argument("--no-crossref", action="store_true", help=ARG_HELP_STRINGS["no_crossref"]) parser.add_argument("--no-pubmed", action="store_true", help=ARG_HELP_STRINGS["no_pubmed"]) parser.add_argument("--no-doaj", action="store_true", help=ARG_HELP_STRINGS["no_doaj"]) parser.add_argument("-institution", "--institution_column", type=int, help=ARG_HELP_STRINGS["institution"]) parser.add_argument("-period", "--period_column", type=int, help=ARG_HELP_STRINGS["period"]) parser.add_argument("-doi", "--doi_column", type=int, help=ARG_HELP_STRINGS["doi"]) parser.add_argument("-euro", "--euro_column", type=int, help=ARG_HELP_STRINGS["euro"]) parser.add_argument("-is_hybrid", "--is_hybrid_column", type=int, help=ARG_HELP_STRINGS["is_hybrid"]) parser.add_argument("-publisher", "--publisher_column", type=int, help=ARG_HELP_STRINGS["publisher"]) parser.add_argument("-journal_full_title", "--journal_full_title_column", type=int, help=ARG_HELP_STRINGS["journal_full_title"]) parser.add_argument("-book_title", "--book_title_column", type=int, help=ARG_HELP_STRINGS["book_title"]) parser.add_argument("-issn", "--issn_column", type=int, help=ARG_HELP_STRINGS["issn"]) parser.add_argument("-isbn", "--isbn_column", type=int, help=ARG_HELP_STRINGS["isbn"]) parser.add_argument("-backlist_oa", "--backlist_oa_column", type=int, help=ARG_HELP_STRINGS["backlist_oa"]) parser.add_argument("-additional_isbns", "--additional_isbn_columns", type=int, nargs='+', help=ARG_HELP_STRINGS["additional_isbns"]) parser.add_argument("-url", "--url_column", type=int, help=ARG_HELP_STRINGS["url"]) parser.add_argument("-start", type=int, help=ARG_HELP_STRINGS["start"]) parser.add_argument("-end", type=int, help=ARG_HELP_STRINGS["end"]) args = parser.parse_args() handler = logging.StreamHandler(sys.stderr) handler.setFormatter(oat.ANSIColorFormatter()) bufferedHandler = oat.BufferedErrorHandler(handler) bufferedHandler.setFormatter(oat.ANSIColorFormatter()) logging.root.addHandler(handler) logging.root.addHandler(bufferedHandler) logging.root.setLevel(logging.INFO) if args.locale: norm = locale.normalize(args.locale) if norm != args.locale: msg = "locale '{}' not found, normalised to '{}'".format( args.locale, norm) oat.print_y(msg) try: loc = locale.setlocale(locale.LC_ALL, norm) oat.print_g("Using locale " + loc) except locale.Error as loce: msg = "Setting locale to {} failed: {}".format(norm, loce.message) oat.print_r(msg) sys.exit() enc = None # CSV file encoding if args.encoding: try: codec = codecs.lookup(args.encoding) msg = ("Encoding '{}' found in Python's codec collection " + "as '{}'").format(args.encoding, codec.name) oat.print_g(msg) enc = args.encoding except LookupError: msg = ("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") oat.print_r(msg) sys.exit() result = oat.analyze_csv_file(args.csv_file, enc=enc) if result["success"]: csv_analysis = result["data"] print(csv_analysis) else: print(result["error_msg"]) sys.exit() if args.dialect: dialect = args.dialect oat.print_g('Dialect sniffing results ignored, using built-in CSV dialect "' + dialect + '"') else: dialect = csv_analysis.dialect if enc is None: enc = csv_analysis.enc has_header = csv_analysis.has_header or args.force_header if enc is None: print("Error: No encoding given for CSV file and automated " + "detection failed. Please set the encoding manually via the " + "--enc argument") sys.exit() csv_file = open(args.csv_file, "r", encoding=enc) reader = csv.reader(csv_file, dialect=dialect) first_row = next(reader) num_columns = len(first_row) print("\nCSV file has {} columns.".format(num_columns)) csv_file.seek(0) reader = csv.reader(csv_file, dialect=dialect) if args.update and args.overwrite: oat.print_r("Error: Either use the -u or the -o option, not both.") sys.exit() if args.overwrite: for column in OVERWRITE_STRATEGY.keys(): OVERWRITE_STRATEGY[column] = CSVColumn.OW_ALWAYS elif not args.update: for column in OVERWRITE_STRATEGY.keys(): OVERWRITE_STRATEGY[column] = CSVColumn.OW_ASK additional_isbn_columns = [] if args.additional_isbn_columns: for index in args.additional_isbn_columns: if index > num_columns: msg = "Error: Additional ISBN column index {} exceeds number of columns ({})." oat.print_r(msg.format(index, num_columns)) sys.exit() else: additional_isbn_columns.append(index) column_map = { "institution": CSVColumn("institution", {"articles": CSVColumn.MANDATORY, "books": CSVColumn.MANDATORY}, args.institution_column, overwrite=OVERWRITE_STRATEGY["institution"]), "period": CSVColumn("period",{"articles": CSVColumn.MANDATORY, "books": CSVColumn.MANDATORY}, args.period_column, overwrite=OVERWRITE_STRATEGY["period"]), "euro": CSVColumn("euro", {"articles": CSVColumn.MANDATORY, "books": CSVColumn.MANDATORY}, args.euro_column, overwrite=OVERWRITE_STRATEGY["euro"]), "doi": CSVColumn("doi", {"articles": CSVColumn.MANDATORY, "books": CSVColumn.MANDATORY}, args.doi_column, overwrite=OVERWRITE_STRATEGY["doi"]), "is_hybrid": CSVColumn("is_hybrid", {"articles": CSVColumn.MANDATORY, "books": CSVColumn.NONE}, args.is_hybrid_column, overwrite=OVERWRITE_STRATEGY["is_hybrid"]), "publisher": CSVColumn("publisher", {"articles": CSVColumn.BACKUP, "books": CSVColumn.NONE}, args.publisher_column, overwrite=OVERWRITE_STRATEGY["publisher"]), "journal_full_title": CSVColumn("journal_full_title", {"articles": CSVColumn.BACKUP, "books": CSVColumn.NONE}, args.journal_full_title_column, overwrite=OVERWRITE_STRATEGY["journal_full_title"]), "issn": CSVColumn("issn", {"articles": CSVColumn.BACKUP, "books": CSVColumn.NONE}, args.issn_column, overwrite=OVERWRITE_STRATEGY["issn"]), "issn_print": CSVColumn("issn_print", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["issn_print"]), "issn_electronic": CSVColumn("issn_electronic", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["issn_electronic"]), "issn_l": CSVColumn("issn_l", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["issn_l"]), "license_ref": CSVColumn("license_ref", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE} , None, overwrite=OVERWRITE_STRATEGY["license_ref"]), "indexed_in_crossref": CSVColumn("indexed_in_crossref", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["indexed_in_crossref"]), "pmid": CSVColumn("pmid", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["pmid"]), "pmcid": CSVColumn("pmcid", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["pmcid"]), "ut": CSVColumn("ut", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["ut"]), "url": CSVColumn("url", {"articles": CSVColumn.BACKUP, "books": CSVColumn.NONE}, args.url_column, overwrite=OVERWRITE_STRATEGY["url"]), "doaj": CSVColumn("doaj", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["doaj"]), "agreement": CSVColumn("agreement", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["agreement"]), "book_title": CSVColumn("book_title", {"articles": CSVColumn.NONE, "books": CSVColumn.RECOMMENDED}, args.book_title_column, overwrite=OVERWRITE_STRATEGY["book_title"]), "backlist_oa": CSVColumn("backlist_oa", {"articles": CSVColumn.NONE, "books": CSVColumn.MANDATORY}, args.backlist_oa_column, overwrite=OVERWRITE_STRATEGY["backlist_oa"]), "isbn": CSVColumn("isbn", {"articles": CSVColumn.NONE, "books": CSVColumn.BACKUP}, args.isbn_column, overwrite=OVERWRITE_STRATEGY["isbn"]), "isbn_print": CSVColumn("isbn_print", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["isbn_print"]), "isbn_electronic": CSVColumn("isbn_electronic", {"articles": CSVColumn.NONE, "books": CSVColumn.NONE}, None, overwrite=OVERWRITE_STRATEGY["isbn_electronic"]) } header = None if has_header: for row in reader: if not row: # Skip empty lines continue header = row # First non-empty row should be the header if args.ignore_header: print("Skipping header analysis due to command line argument.") break else: print("\n *** Analyzing CSV header ***\n") for (index, item) in enumerate(header): if index in additional_isbn_columns: msg = "Column named '{}' at index {} is designated as additional ISBN column" print(msg.format(item, index)) continue column_type = oat.get_column_type_from_whitelist(item) if column_type is not None and column_map[column_type].index is None: column_map[column_type].index = index column_map[column_type].column_name = item found_msg = ("Found column named '{}' at index {}, " + "assuming this to be the '{}' column.") print(found_msg.format(item, index, column_type)) break print("\n *** Starting heuristical analysis ***\n") for row in reader: if not row: # Skip empty lines # We analyze the first non-empty line, a possible header should # have been processed by now. continue column_candidates = { "doi": [], "period": [], "euro": [] } found_msg = "The entry in column {} looks like a potential {}: {}" for (index, entry) in enumerate(row): if index in [csvcolumn.index for csvcolumn in column_map.values()] + additional_isbn_columns: # Skip columns already assigned continue entry = entry.strip() # Search for a DOI if column_map['doi'].index is None: if oat.DOI_RE.match(entry): column_id = str(index) # identify column either numerically or by column header if header: column_id += " ('" + header[index] + "')" print(found_msg.format(column_id, "DOI", entry)) column_candidates['doi'].append(index) continue # Search for a potential year string if column_map['period'].index is None: try: maybe_period = int(entry) now = datetime.date.today().year # Should be a wide enough margin if maybe_period >= 2000 and maybe_period <= now + 2: column_id = str(index) if header: column_id += " ('" + header[index] + "')" print(found_msg.format(column_id, "year", entry)) column_candidates['period'].append(index) continue except ValueError: pass # Search for a potential monetary amount if column_map['euro'].index is None: try: maybe_euro = locale.atof(entry) if maybe_euro >= 10 and maybe_euro <= 10000: column_id = str(index) if header: column_id += " ('" + header[index] + "')" print (found_msg.format(column_id, "euro amount", entry)) column_candidates['euro'].append(index) continue except ValueError: pass for column_type, candidates in column_candidates.items(): if column_map[column_type].index is not None: continue if len(candidates) > 1: print("Could not reliably identify the '" + column_type + "' column - more than one possible candiate!") elif len(candidates) < 1: print("No candidate found for column '" + column_type + "'!") else: index = candidates.pop() column_map[column_type].index = index if header: column_id = header[index] column_map[column_type].column_name = column_id else: column_id = index msg = "Assuming column '{}' to be the '{}' column." print(msg.format(column_id, column_type)) column_map[column_type].index = index break print("\n *** CSV file analysis summary ***\n") index_dict = {csvc.index: csvc for csvc in column_map.values()} for index in range(num_columns): column_name = "" if header: column_name = header[index] if index in index_dict: column = index_dict[index] msg = u"column number {} ({}) is the '{}' column ({})".format( index, column_name, column.column_type, column.get_req_description()) print(msg) elif index in additional_isbn_columns: msg = u"column number {} ({}) is an additional ISBN column".format(index, column_name) oat.print_c(msg) else: if args.add_unknown_columns: msg = (u"column number {} ({}) is an unknown column, it will be " + "appended to the generated CSV file") print(msg.format(index, column_name)) if not column_name: # Use a generic name column_name = "unknown" while column_name in column_map.keys(): # TODO: Replace by a numerical, increasing suffix column_name += "_" column_map[column_name] = CSVColumn(column_name, CSVColumn.NONE, index) else: msg = (u"column number {} ({}) is an unknown column, it will be " + "ignored") print(msg.format(index, column_name)) print() for column in column_map.values(): if column.index is None: msg = "The '{}' column could not be identified ({})" print(msg.format(column.column_type, column.get_req_description())) print() article_mand_missing = [x.column_type for x in column_map.values() if x.requirement["articles"] == CSVColumn.MANDATORY and x.index is None] article_back_missing = [x.column_type for x in column_map.values() if x.requirement["articles"] == CSVColumn.BACKUP and x.index is None] book_mand_missing = [x.column_type for x in column_map.values() if x.requirement["books"] == CSVColumn.MANDATORY and x.index is None] book_back_missing = [x.column_type for x in column_map.values() if x.requirement["books"] == CSVColumn.BACKUP and x.index is None] if article_mand_missing: msg = "Article enrichment is not possible - mandatory columns are missing ({})" oat.print_y(msg.format(", ".join(article_mand_missing))) elif article_back_missing: msg = "Article enrichment is possible, but backup columns are missing ({}) - each record will need a valid DOI" oat.print_b(msg.format(", ".join(article_back_missing))) else: oat.print_g("Article enrichment is possible with all backup columns in place") if book_mand_missing: msg = "Book enrichment is not possible - mandatory columns are missing ({})" oat.print_y(msg.format(", ".join(book_mand_missing))) elif book_back_missing: msg = "Book enrichment is possible, but backup columns are missing ({}) - each record will need a valid DOI" oat.print_b(msg.format(", ".join(book_back_missing))) else: oat.print_g("Book enrichment is possible with all backup columns in place") print() if article_mand_missing and book_mand_missing: if not args.force: oat.print_r("ERROR: Could not detect the minimum mandatory data set for any " + "publication type. There are 2 ways to fix this:") if not header: print("1) Add a header row to your file and identify the " + "column(s) by assigning them an appropiate column name.") else: print("1) Identify the missing column(s) by assigning them " + "a different column name in the CSV header (You can " + "use the column name(s) mentioned in the message above)") print("2) Use command line parameters when calling this script " + "to identify the missing columns (use -h for help) ") sys.exit() else: oat.print_y("WARNING: Could not detect the minimum mandatory data set for any " + "publication type - forced to continue.") start = input("\nStart metadata aggregation? (y/n):") while start not in ["y", "n"]: start = input("Please type 'y' or 'n':") if start == "n": sys.exit() print("\n *** Starting metadata aggregation ***\n") enriched_content = {} for record_type, fields in oat.COLUMN_SCHEMAS.items(): # add headers enriched_content[record_type] = { "count": 0, "content": [list(fields)] } if not os.path.isdir("tempfiles"): os.mkdir("tempfiles") isbn_handling = oat.ISBNHandling("tempfiles/ISBNRangeFile.xml") doab_analysis = oat.DOABAnalysis(isbn_handling, "tempfiles/DOAB.csv", verbose=False) doaj_analysis = oat.DOAJAnalysis("tempfiles/DOAJ.csv") csv_file.seek(0) reader = csv.reader(csv_file, dialect=dialect) header_processed = False row_num = 0 for row in reader: row_num += 1 if not row: continue # skip empty lines if not header_processed: header_processed = True if has_header: # If the CSV file has a header, we are currently there - skip it # to get to the first data row continue if args.start and args.start > row_num: continue if args.end and args.end < row_num: continue print("---Processing line number " + str(row_num) + "---") result_type, enriched_row = oat.process_row(row, row_num, column_map, num_columns, additional_isbn_columns, doab_analysis, doaj_analysis, args.no_crossref, args.no_pubmed, args.no_doaj, args.round_monetary, args.offsetting_mode) for record_type, value in enriched_content.items(): if record_type == result_type: value["content"].append(enriched_row) value["count"] += 1 else: empty_line = ["" for x in value["content"][0]] value["content"].append(empty_line) csv_file.close() for record_type, value in enriched_content.items(): if value["count"] > 0: with open('out_' + record_type + '.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, oat.OPENAPC_STANDARD_QUOTEMASK, True, True, True) writer.write_rows(value["content"]) if not bufferedHandler.buffer: oat.print_g("Metadata enrichment successful, no errors occured") else: oat.print_r("There were errors during the enrichment process:\n") # closing will implicitly flush the handler and print any buffered # messages to stderr bufferedHandler.close()
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("-b", "--bypass-cert-verification", action="store_true", help=ARG_HELP_STRINGS["bypass"]) parser.add_argument("-d", "--offline_doaj", help=ARG_HELP_STRINGS["offline_doaj"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-f", "--force", action="store_true", help=ARG_HELP_STRINGS["force"]) parser.add_argument("-i", "--ignore-header", action="store_true", help=ARG_HELP_STRINGS["ignore_header"]) parser.add_argument("-j", "--force-header", action="store_true", help=ARG_HELP_STRINGS["force_header"]) parser.add_argument("-l", "--locale", help=ARG_HELP_STRINGS["locale"]) parser.add_argument("-u", "--add-unknown-columns", action="store_true", help=ARG_HELP_STRINGS["unknown_columns"]) parser.add_argument("-v", "--verbose", action="store_true", help=ARG_HELP_STRINGS["verbose"]) parser.add_argument("-institution", "--institution_column", type=int, help=ARG_HELP_STRINGS["institution"]) parser.add_argument("-period", "--period_column", type=int, help=ARG_HELP_STRINGS["period"]) parser.add_argument("-doi", "--doi_column", type=int, help=ARG_HELP_STRINGS["doi"]) parser.add_argument("-euro", "--euro_column", type=int, help=ARG_HELP_STRINGS["euro"]) parser.add_argument("-is_hybrid", "--is_hybrid_column", type=int, help=ARG_HELP_STRINGS["is_hybrid"]) parser.add_argument("-publisher", "--publisher_column", type=int, help=ARG_HELP_STRINGS["publisher"]) parser.add_argument("-journal_full_title", "--journal_full_title_column", type=int, help=ARG_HELP_STRINGS["journal_full_title"]) parser.add_argument("-issn", "--issn_column", type=int, help=ARG_HELP_STRINGS["issn"]) parser.add_argument("-url", "--url_column", type=int, help=ARG_HELP_STRINGS["url"]) parser.add_argument("-start", type=int, help=ARG_HELP_STRINGS["start"]) parser.add_argument("-end", type=int, help=ARG_HELP_STRINGS["end"]) args = parser.parse_args() enc = None # CSV file encoding handler = logging.StreamHandler(sys.stderr) handler.setFormatter(ANSIColorFormatter()) bufferedHandler = BufferedErrorHandler(handler) bufferedHandler.setFormatter(ANSIColorFormatter()) logging.root.addHandler(handler) logging.root.addHandler(bufferedHandler) logging.root.setLevel(logging.INFO) if args.locale: norm = locale.normalize(args.locale) if norm != args.locale: print "locale '{}' not found, normalized to '{}'".format( args.locale, norm) try: loc = locale.setlocale(locale.LC_ALL, norm) print "Using locale", loc except locale.Error as loce: print "Setting locale to " + norm + " failed: " + loce.message sys.exit() if args.encoding: try: codec = codecs.lookup(args.encoding) print("Encoding '{}' found in Python's codec collection " + "as '{}'").format(args.encoding, codec.name) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() result = oat.analyze_csv_file(args.csv_file) if result["success"]: csv_analysis = result["data"] print csv_analysis else: print result["error_msg"] sys.exit() if enc is None: enc = csv_analysis.enc dialect = csv_analysis.dialect has_header = csv_analysis.has_header or args.force_header if enc is None: print("Error: No encoding given for CSV file and automated " + "detection failed. Please set the encoding manually via the " + "--enc argument") sys.exit() doaj_offline_analysis = None if args.offline_doaj: if os.path.isfile(args.offline_doaj): doaj_offline_analysis = oat.DOAJOfflineAnalysis(args.offline_doaj) else: oat.print_r("Error: " + args.offline_doaj + " does not seem " "to be a file!") csv_file = open(args.csv_file, "r") reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) first_row = reader.next() num_columns = len(first_row) print "\nCSV file has {} columns.".format(num_columns) csv_file.seek(0) reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) column_map = OrderedDict([ ("institution", CSVColumn("institution", CSVColumn.MANDATORY, args.institution_column)), ("period", CSVColumn("period", CSVColumn.MANDATORY, args.period_column)), ("euro", CSVColumn("euro", CSVColumn.MANDATORY, args.euro_column)), ("doi", CSVColumn("doi", CSVColumn.MANDATORY, args.doi_column)), ("is_hybrid", CSVColumn("is_hybrid", CSVColumn.MANDATORY, args.is_hybrid_column)), ("publisher", CSVColumn("publisher", CSVColumn.OPTIONAL, args.publisher_column)), ("journal_full_title", CSVColumn("journal_full_title", CSVColumn.OPTIONAL, args.journal_full_title_column)), ("issn", CSVColumn("issn", CSVColumn.OPTIONAL, args.issn_column)), ("issn_print", CSVColumn("issn_print", CSVColumn.NONE, None)), ("issn_electronic", CSVColumn("issn_electronic", CSVColumn.NONE, None)), ("license_ref", CSVColumn("license_ref", CSVColumn.NONE, None)), ("indexed_in_crossref", CSVColumn("indexed_in_crossref", CSVColumn.NONE, None)), ("pmid", CSVColumn("pmid", CSVColumn.NONE, None)), ("pmcid", CSVColumn("pmcid", CSVColumn.NONE, None)), ("ut", CSVColumn("ut", CSVColumn.NONE, None)), ("url", CSVColumn("url", CSVColumn.OPTIONAL, args.url_column)), ("doaj", CSVColumn("doaj", CSVColumn.NONE, None)) ]) # Do not quote the values in the 'period' and 'euro' columns quotemask = [ True, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, ] header = None if has_header: for row in reader: if not row: # Skip empty lines continue header = row # First non-empty row should be the header if args.ignore_header: print "Skipping header analysis due to command line argument." break else: print "\n *** Analyzing CSV header ***\n" for (index, item) in enumerate(header): column_type = oat.get_column_type_from_whitelist(item) if column_type is not None and column_map[ column_type].index is None: column_map[column_type].index = index column_map[column_type].column_name = item print("Found column named '{}' at index {}, " + "assuming this to be the {} column.").format( item, index, column_type) break print "\n *** Starting heuristical analysis ***\n" for row in reader: if not row: # Skip empty lines # We analyze the first non-empty line, a possible header should # have been processed by now. continue column_candidates = {"doi": [], "period": [], "euro": []} for (index, entry) in enumerate(row): if index in [csvcolumn.index for csvcolumn in column_map.values()]: # Skip columns already assigned continue entry = entry.strip() # Search for a DOI if column_map['doi'].index is None: if oat.DOI_RE.match(entry): column_id = str(index) # identify column either numerical or by column header if header: column_id += " ('" + header[index] + "')" print("The entry in column {} looks like a " + "DOI: {}").format(column_id, entry) column_candidates['doi'].append(index) continue # Search for a potential year string if column_map['period'].index is None: try: maybe_period = int(entry) now = datetime.date.today().year # Should be a wide enough margin if maybe_period >= 2000 and maybe_period <= now + 2: column_id = str(index) if header: column_id += " ('" + header[index] + "')" print("The entry in column {} looks like a " + "potential period: {}").format(column_id, entry) column_candidates['period'].append(index) continue except ValueError: pass # Search for a potential monetary amount if column_map['euro'].index is None: try: maybe_euro = locale.atof(entry) # Are there APCs above 6000€ ?? if maybe_euro >= 10 and maybe_euro <= 6000: column_id = str(index) if header: column_id += " ('" + header[index] + "')" print("The entry in column {} looks like a " + "potential euro amount: {}").format( column_id, entry) column_candidates['euro'].append(index) continue except ValueError: pass for column_type, candidates in column_candidates.iteritems(): if column_map[column_type].index is not None: continue if len(candidates) > 1: print("Could not reliably identify the '" + column_type + "' column - more than one possible candiate!") elif len(candidates) < 1: print "No candidate found for column '" + column_type + "'!" else: index = candidates.pop() column_map[column_type].index = index if header: column_id = header[index] column_map[column_type].column_name = column_id else: column_id = index print("Assuming column '{}' to be the '{}' " + "column.").format(column_id, column_type) column_map[column_type].index = index break # Wrap up: Check if there any mandatory column types left which have not # yet been identified - we cannot continue in that case (unless forced). unassigned = filter( lambda (k, v): v.requirement == CSVColumn.MANDATORY and v.index is None, column_map.iteritems()) if unassigned: for item in unassigned: print "The {} column is still unidentified.".format(item[0]) if header: print "The CSV header is:\n" + dialect.delimiter.join(header) if not args.force: print("ERROR: We cannot continue because not all mandatory " + "column types in the CSV file could be automatically " + "identified. There are 2 ways to fix this:") if not header: print( "1) Add a header row to your file and identify the " + "column(s) by assigning them an appropiate column name.") else: print( "1) Identify the missing column(s) by assigning them " + "a different column name in the CSV header (You can " + "use the column name(s) mentioned in the message above)") print("2) Use command line parameters when calling this script " + "to identify the missing columns (use -h for help) ") sys.exit() else: print("WARNING: Not all mandatory column types in the CSV file " + "could be automatically identified - forced to continue.") print "\n *** CSV file analysis summary ***\n" index_dict = {csvc.index: csvc for csvc in column_map.values()} for index in range(num_columns): column_name = "" if header: column_name = header[index] if index in index_dict: column = index_dict[index] msg = "column number {} ({}) is the {} column '{}'".format( index, column_name, column.requirement, column.column_type) if column.requirement in [CSVColumn.MANDATORY, CSVColumn.OPTIONAL]: oat.print_g(msg) else: oat.print_b(msg) else: if args.add_unknown_columns: msg = ( "column number {} ({}) is an unknown column, it will be " + "appended to the generated CSV file") oat.print_y(msg.format(index, column_name)) if not column_name: # Use a generic name column_name = "unknown" while column_name in column_map.keys(): # TODO: Replace by a numerical, increasing suffix column_name += "_" column_map[column_name] = CSVColumn(column_name, CSVColumn.NONE, index) else: msg = ( "column number {} ({}) is an unknown column, it will be " + "ignored") oat.print_y(msg.format(index, column_name)) print "" for column in column_map.values(): if column.index is None: msg = "The {} column '{}' could not be identified." print msg.format(column.requirement, column.column_type) # Check for unassigned optional column types. We can continue but should # issue a warning as all entries will need a valid DOI in this case. unassigned = filter( lambda (k, v): v.requirement == CSVColumn.OPTIONAL and v.index is None, column_map.iteritems()) if unassigned: print("\nWARNING: Not all optional column types could be " + "identified. Metadata aggregation is still possible, but " + "every entry in the CSV file will need a valid DOI.") start = raw_input("\nStart metadata aggregation? (y/n):") while start not in ["y", "n"]: start = raw_input("Please type 'y' or 'n':") if start == "n": sys.exit() print "\n *** Starting metadata aggregation ***\n" enriched_content = [] csv_file.seek(0) reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) header_processed = False row_num = 0 for row in reader: row_num += 1 if not row: continue # skip empty lines if not header_processed: header_processed = True enriched_content.append(column_map.keys()) if has_header: # If the CSV file has a header, we are currently there - skip it # to get to the first data row continue if args.start and args.start > row_num: continue if args.end and args.end < row_num: continue print "---Processing line number " + str(row_num) + "---" enriched_row = oat.process_row(row, row_num, column_map, num_columns, doaj_offline_analysis, args.bypass_cert_verification) enriched_content.append(enriched_row) csv_file.close() with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, quotemask, True, True) writer.write_rows(enriched_content) if not bufferedHandler.buffer: oat.print_g("Metadata enrichment successful, no errors occured") else: oat.print_r("There were errors during the enrichment process:\n") # closing will implicitly flush the handler and print any buffered # messages to stderr bufferedHandler.close()
def main(): parser = argparse.ArgumentParser() parser.add_argument("source_file", help=ARG_HELP_STRINGS["source_file"]) parser.add_argument("source_file_key_column", type=int, help=ARG_HELP_STRINGS["source_file_key_column"]) parser.add_argument("source_file_value_column", type=int, help=ARG_HELP_STRINGS["source_file_value_column"]) parser.add_argument("target_file", help=ARG_HELP_STRINGS["target_file"]) parser.add_argument("target_file_key_column", type=int, help=ARG_HELP_STRINGS["target_file_key_column"]) parser.add_argument("target_file_value_column", type=int, help=ARG_HELP_STRINGS["target_file_value_column"]) parser.add_argument("-s", "--strict", action="store_true", help=ARG_HELP_STRINGS["strict"]) parser.add_argument("-f", "--force_overwrite", action="store_true", help=ARG_HELP_STRINGS["force_overwrite"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-e2", "--other_encoding", help=ARG_HELP_STRINGS["other_encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules encs = [] #CSV file encodings for encoding in [args.encoding, args.other_encoding]: if encoding: try: codec = codecs.lookup(encoding) print ("Encoding '{}' found in Python's codec collection " + "as '{}'").format(encoding, codec.name) enc = args.encoding except LookupError: print ("Error: '" + encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() encs.append(encoding) mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print ("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] source_header, source_content = oat.get_csv_file_content(args.source_file, enc=encs[0]) key_column_name = "column " + str(args.source_file_key_column) value_column_name = "column " + str(args.source_file_value_column) if source_header: header = source_header[0] key_column_name = header[args.source_file_key_column] value_column_name = header[args.source_file_value_column] msg = u"Creating mapping table ({} -> {}) for source file {}...".format(key_column_name, value_column_name, args.source_file) oat.print_g(msg) mapping_table = {} ambiguous_keys = [] for line in source_content: if line: key = line[args.source_file_key_column] if key == 'NA': continue value = line[args.source_file_value_column] if key not in mapping_table: mapping_table[key] = value else: if mapping_table[key] != value: if not args.strict: msg = u"WARNING: Replacing existing value '{}' for key '{}' with new value '{}'".format(mapping_table[key], key, value) mapping_table[key] = value oat.print_y(msg) else: if key not in ambiguous_keys: ambiguous_keys.append(key) if args.strict: for key in ambiguous_keys: del(mapping_table[key]) msg = u"INFO: Ambiguous key '{}' dropped from mapping table".format(key) oat.print_b(msg) oat.print_g("mapping table created, contains " + str(len(mapping_table)) + " entries") target_header, target_content = oat.get_csv_file_content(args.target_file, enc=encs[1]) line_num = 0 if not target_header else 1 replace_msg = u"Line {}: Found matching key '{}', replaced old value '{}' by '{}'" modified_content = [] for line in target_content: key = line[args.target_file_key_column] if key in mapping_table: new_value = mapping_table[key] old_value = line[args.target_file_value_column] if old_value != new_value: if len(old_value) == 0 or old_value == "NA": line[args.target_file_value_column] = new_value msg = replace_msg.format(line_num, key, old_value, new_value) oat.print_g(msg) else: if args.force_overwrite: line[args.target_file_value_column] = new_value msg = replace_msg.format(line_num, key, old_value, new_value) oat.print_y(msg) modified_content.append(line) line_num += 1 with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, False) writer.write_rows(target_header + modified_content)
def main(): parser = argparse.ArgumentParser() parser.add_argument("source_file") parser.add_argument("source_column", type=int) parser.add_argument("currency_column", type=int) parser.add_argument("period_column", type=int) parser.add_argument("target_column", type=int) parser.add_argument("-f", "--force_overwrite", action="store_true") parser.add_argument("-l", "--locale", help=ARG_HELP_STRINGS["locale"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" oat.print_g(msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() if args.locale: norm = locale.normalize(args.locale) if norm != args.locale: msg = "locale '{}' not found, normalised to '{}'".format( args.locale, norm) oat.print_y(msg) try: loc = locale.setlocale(locale.LC_ALL, norm) oat.print_g("Using locale " + loc) except locale.Error as loce: msg = "Setting locale to {} failed: {}".format(norm, loce.message) oat.print_r(msg) sys.exit() header, content = oat.get_csv_file_content(args.source_file, enc) fieldnames = header.pop() modified_content = [] line_num = 0 for column_type in [ "source_column", "currency_column", "period_column", "target_column" ]: index = getattr(args, column_type) msg = "Column {} ('{}') is the {}." oat.print_g(msg.format(index, fieldnames[index], column_type)) start = input("\nStart conversion? (y/n):") while start not in ["y", "n"]: start = input("Please type 'y' or 'n':") if start == "n": sys.exit() for line in content: line_num += 1 if not oat.has_value(line[args.source_column]): oat.print_y("WARNING: No source value found in line " + str(line_num) + ", skipping...") modified_content.append(line) continue monetary_value = None try: monetary_value = locale.atof(line[args.source_column]) except ValueError: msg = "WARNING: Could not extract a valid monetary value from source column in line {} ('{}'), skipping..." oat.print_y(msg.format(line_num, line[args.source_column])) modified_content.append(line) continue period = line[args.period_column] if not oat.has_value(period) or not period.isdigit(): msg = "WARNING: Could not extract a valid year string from period column in line {} ('{}'), skipping..." oat.print_y(msg.format(line_num, period)) modified_content.append(line) continue currency = line[args.currency_column] if not oat.has_value(currency): msg = "WARNING: Could not extract a valid currency indicator from currency column in line {} ('{}'), skipping..." oat.print_y(msg.format(line_num, currency)) modified_content.append(line) continue try: rate = AVG_YEARLY_CONVERSION_RATES[currency][period] except KeyError: msg = "ERROR: No conversion rate found for currency {} in year {} (line {}), aborting..." oat.print_r(msg.format(currency, period, line_num)) sys.exit() euro_value = round(monetary_value / rate, 2) line[args.target_column] = str(euro_value) modified_content.append(line) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, True) writer.write_rows([fieldnames] + modified_content)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) subparsers = parser.add_subparsers(help='The column operation to perform') delete_parser = subparsers.add_parser("delete", help="delete help") delete_parser.add_argument("column_index", type=int, help='bar help') delete_parser.set_defaults(func=delete_column) insert_parser = subparsers.add_parser("insert", help="insert help") insert_parser.add_argument("target_index", type=int, help='bar help') insert_parser.add_argument("column_name", help='bar help') insert_parser.add_argument("default_value", help='bar help') insert_parser.set_defaults(func=insert_column) move_parser = subparsers.add_parser("move", help="move help") move_parser.add_argument("column_index", type=int, help='bar help') move_parser.add_argument("target_index", type=int, help='bar help') move_parser.set_defaults(func=move_column) copy_parser = subparsers.add_parser("copy", help="copy help") copy_parser.set_defaults(func=copy) args = parser.parse_args() quote_rules = args.openapc_quote_rules enc = None #CSV file encoding if args.encoding: try: codec = codecs.lookup(args.encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" print(msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print ("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() header, content = oat.get_csv_file_content(args.csv_file, enc) mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print ("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] new_rows = args.func(header, content, args) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, True) writer.write_rows(new_rows)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) subparsers = parser.add_subparsers(help='The column operation to perform') delete_parser = subparsers.add_parser("delete", help="delete help") delete_parser.add_argument("column_index", type=int, help='bar help') delete_parser.set_defaults(func=delete_column) insert_parser = subparsers.add_parser("insert", help="insert help") insert_parser.add_argument("target_index", type=int, help='bar help') insert_parser.add_argument("column_name", help='bar help') insert_parser.add_argument("default_value", help='bar help') insert_parser.set_defaults(func=insert_column) move_parser = subparsers.add_parser("move", help="move help") move_parser.add_argument("column_index", type=int, help='bar help') move_parser.add_argument("target_index", type=int, help='bar help') move_parser.set_defaults(func=move_column) copy_parser = subparsers.add_parser("copy", help="copy help") copy_parser.set_defaults(func=copy) args = parser.parse_args() quote_rules = args.openapc_quote_rules enc = None #CSV file encoding if args.encoding: try: codec = codecs.lookup(args.encoding) print("Encoding '{}' found in Python's codec collection " + "as '{}'").format(args.encoding, codec.name) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() result = oat.analyze_csv_file(args.csv_file, 500) if result["success"]: csv_analysis = result["data"] print csv_analysis else: print result["error_msg"] sys.exit() if enc is None: enc = csv_analysis.enc if enc is None: print("Error: No encoding given for CSV file and automated " + "detection failed. Please set the encoding manually via the " + "--enc argument") sys.exit() dialect = csv_analysis.dialect csv_file = open(args.csv_file, "r") reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) new_rows = args.func(reader, args) csv_file.close() mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, True) writer.write_rows(new_rows)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-v", "--verbose", action="store_true", help=ARG_HELP_STRINGS["verbose"]) parser.add_argument("-l", "--locale", help=ARG_HELP_STRINGS["locale"]) parser.add_argument("-i", "--ignore-header", action="store_true", help=ARG_HELP_STRINGS["headers"]) parser.add_argument("-f", "--force", action="store_true", help=ARG_HELP_STRINGS["force"]) parser.add_argument("-b", "--bypass-cert-verification", action="store_true", help=ARG_HELP_STRINGS["bypass"]) parser.add_argument("-institution", "--institution_column", type=int, help=ARG_HELP_STRINGS["institution"]) parser.add_argument("-period", "--period_column", type=int, help=ARG_HELP_STRINGS["period"]) parser.add_argument("-doi", "--doi_column", type=int, help=ARG_HELP_STRINGS["doi"]) parser.add_argument("-euro", "--euro_column", type=int, help=ARG_HELP_STRINGS["euro"]) parser.add_argument("-is_hybrid", "--is_hybrid_column", type=int, help=ARG_HELP_STRINGS["is_hybrid"]) parser.add_argument("-publisher", "--publisher_column", type=int, help=ARG_HELP_STRINGS["publisher"]) parser.add_argument("-journal_full_title", "--journal_full_title_column", type=int, help=ARG_HELP_STRINGS["journal_full_title"]) parser.add_argument("-issn", "--issn_column", type=int, help=ARG_HELP_STRINGS["issn"]) parser.add_argument("-url", "--url_column", type=int, help=ARG_HELP_STRINGS["url"]) args = parser.parse_args() enc = None # CSV file encoding if args.locale: norm = locale.normalize(args.locale) if norm != args.locale: print "locale '{}' not found, normalized to '{}'".format( args.locale, norm) try: loc = locale.setlocale(locale.LC_ALL, norm) print "Using locale", loc except locale.Error as loce: print "Setting locale to " + norm + " failed: " + loce.message sys.exit() if args.encoding: try: codec = codecs.lookup(args.encoding) print("Encoding '{}' found in Python's codec collection " + "as '{}'").format(args.encoding, codec.name) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() result = oat.analyze_csv_file(args.csv_file) if result["success"]: csv_analysis = result["data"] print csv_analysis else: print result["error_msg"] sys.exit() if enc is None: enc = csv_analysis.enc dialect = csv_analysis.dialect has_header = csv_analysis.has_header if enc is None: print("Error: No encoding given for CSV file and automated " + "detection failed. Please set the encoding manually via the " + "--enc argument") sys.exit() csv_file = open(args.csv_file, "r") reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) first_row = reader.next() num_columns = len(first_row) print "\nCSV file has {} columns.".format(num_columns) csv_file.seek(0) reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) column_map = OrderedDict([ ("institution", CSVColumn("institution", CSVColumn.MANDATORY, args.institution_column)), ("period", CSVColumn("period", CSVColumn.MANDATORY, args.period_column)), ("euro", CSVColumn("euro", CSVColumn.MANDATORY, args.euro_column)), ("doi", CSVColumn("doi", CSVColumn.MANDATORY, args.doi_column)), ("is_hybrid", CSVColumn("is_hybrid", CSVColumn.MANDATORY, args.is_hybrid_column)), ("publisher", CSVColumn("publisher", CSVColumn.OPTIONAL, args.publisher_column)), ("journal_full_title", CSVColumn("journal_full_title", CSVColumn.OPTIONAL, args.journal_full_title_column)), ("issn", CSVColumn("issn", CSVColumn.OPTIONAL, args.issn_column)), ("issn_print", CSVColumn("issn_print", CSVColumn.NONE, None)), ("issn_electronic", CSVColumn("issn_electronic", CSVColumn.NONE, None)), ("license_ref", CSVColumn("license_ref", CSVColumn.NONE, None)), ("indexed_in_crossref", CSVColumn("indexed_in_crossref", CSVColumn.NONE, None)), ("pmid", CSVColumn("pmid", CSVColumn.NONE, None)), ("pmcid", CSVColumn("pmcid", CSVColumn.NONE, None)), ("ut", CSVColumn("ut", CSVColumn.NONE, None)), ("url", CSVColumn("url", CSVColumn.OPTIONAL, args.url_column)), ("doaj", CSVColumn("doaj", CSVColumn.NONE, None)) ]) # Do not quote the values in the 'period' and 'euro' columns quotemask = [ True, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, ] header = None if has_header: for row in reader: if not row: # Skip empty lines continue header = row # First non-empty row should be the header if args.ignore_header: print "Skipping header analysis due to command line argument." break else: print "\n *** Analyzing CSV header ***\n" for (index, item) in enumerate(header): column_type = oat.get_column_type_from_whitelist(item) if column_type is not None and column_map[ column_type].index is None: column_map[column_type].index = index column_map[column_type].column_name = item print("Found column named '{}' at index {}, " + "assuming this to be the {} column.").format( item, index, column_type) break print "\n *** Starting heuristical analysis ***\n" for row in reader: if not row: # Skip empty lines # We analyze the first non-empty line, a possible header should # have been processed by now. continue column_candidates = {"doi": [], "period": [], "euro": []} for (index, entry) in enumerate(row): if index in [csvcolumn.index for csvcolumn in column_map.values()]: # Skip columns already assigned continue entry = entry.strip() # Search for a DOI if column_map['doi'].index is None: if oat.DOI_RE.match(entry): column_id = str(index) # identify column either numerical or by column header if header: column_id += " ('" + header[index] + "')" print("The entry in column {} looks like a " + "DOI: {}").format(column_id, entry) column_candidates['doi'].append(index) continue # Search for a potential year string if column_map['period'].index is None: try: maybe_period = int(entry) now = datetime.date.today().year # Should be a wide enough margin if maybe_period >= 2000 and maybe_period <= now + 2: column_id = str(index) if header: column_id += " ('" + header[index] + "')" print("The entry in column {} looks like a " + "potential period: {}").format(column_id, entry) column_candidates['period'].append(index) continue except ValueError: pass # Search for a potential monetary amount if column_map['euro'].index is None: try: maybe_euro = locale.atof(entry) # Are there APCs above 6000€ ?? if maybe_euro >= 10 and maybe_euro <= 6000: column_id = str(index) if header: column_id += " ('" + header[index] + "')" print("The entry in column {} looks like a " + "potential euro amount: {}").format( column_id, entry) column_candidates['euro'].append(index) continue except ValueError: pass for column_type, candidates in column_candidates.iteritems(): if column_map[column_type].index is not None: continue if len(candidates) > 1: print("Could not reliably identify the '" + column_type + "' column - more than one possible candiate!") elif len(candidates) < 1: print "No candidate found for column '" + column_type + "'!" else: index = candidates.pop() column_map[column_type].index = index if header: column_id = header[index] column_map[column_type].column_name = column_id else: column_id = index print("Assuming column '{}' to be the '{}' " + "column.").format(column_id, column_type) column_map[column_type].index = index break # Wrap up: Check if there any mandatory column types left which have not # yet been identified - we cannot continue in that case (unless forced). unassigned = filter( lambda (k, v): v.requirement == CSVColumn.MANDATORY and v.index is None, column_map.iteritems()) if unassigned: for item in unassigned: print "The {} column is still unidentified.".format(item[0]) if header: print "The CSV header is:\n" + dialect.delimiter.join(header) if not args.force: print("ERROR: We cannot continue because not all mandatory " + "column types in the CSV file could be automatically " + "identified. There are 2 ways to fix this:") if not header: print( "1) Add a header row to your file and identify the " + "column(s) by assigning them an appropiate column name.") else: print( "1) Identify the missing column(s) by assigning them " + "a different column name in the CSV header (You can " + "use the column name(s) mentioned in the message above)") print("2) Use command line parameters when calling this script " + "to identify the missing columns (use -h for help) ") sys.exit() else: print("WARNING: Not all mandatory column types in the CSV file " + "could be automatically identified - forced to continue.") print "\n *** CSV file analysis summary ***\n" index_dict = {csvc.index: csvc for csvc in column_map.values()} for index in range(num_columns): column_name = "" if header: column_name = header[index] if index in index_dict: column = index_dict[index] msg = "column number {} ({}) is the {} column '{}'".format( index, column_name, column.requirement, column.column_type) if column.requirement in [CSVColumn.MANDATORY, CSVColumn.OPTIONAL]: oat.print_g(msg) else: oat.print_b(msg) else: msg = ("column number {} ({}) is an unknown column, it will be " + "appended to the generated CSV file") oat.print_y(msg.format(index, column_name)) if not column_name: # Use a generic name column_name = "unknown" while column_name in column_map.keys(): # TODO: Replace by a numerical, increasing suffix column_name += "_" column_map[column_name] = CSVColumn(column_name, CSVColumn.NONE, index) print "" for column in column_map.values(): if column.index is None: msg = "The {} column '{}' could not be identified." print msg.format(column.requirement, column.column_type) # Check for unassigned optional column types. We can continue but should # issue a warning as all entries will need a valid DOI in this case. unassigned = filter( lambda (k, v): v.requirement == CSVColumn.OPTIONAL and v.index is None, column_map.iteritems()) if unassigned: print("\nWARNING: Not all optional column types could be " + "identified. Metadata aggregation is still possible, but " + "every entry in the CSV file will need a valid DOI.") start = raw_input("\nStart metadata aggregation? (y/n):") while start not in ["y", "n"]: start = raw_input("Please type 'y' or 'n':") if start == "n": sys.exit() print "\n *** Starting metadata aggregation ***\n" enriched_content = [] error_messages = [] csv_file.seek(0) reader = oat.UnicodeReader(csv_file, dialect=dialect, encoding=enc) header_processed = False row_num = 0 for row in reader: row_num += 1 if not row: continue # skip empty lines if not header_processed: header_processed = True enriched_content.append(column_map.keys()) if has_header: # If the CSV file has a header, we are currently there - skip it # to get to the first data row continue print "---Processing line number " + str(row_num) + "---" if len(row) != num_columns: error_msg = ( "Syntax: the number of values in line {} ({}) " + "differs from the number of columns ({}). Line left " + "unchanged, please correct the error in the result " + "file and re-run.") error_msg_fmt = error_msg.format(row_num, len(row), num_columns) error_messages.append("Line {}: {}".format(row_num, error_msg_fmt)) oat.print_r(error_msg_fmt) enriched_content.append(row) continue doi = row[column_map["doi"].index] current_row = OrderedDict() # Copy content of identified columns for csv_column in column_map.values(): if csv_column.index is not None and len(row[csv_column.index]) > 0: if csv_column.column_type == "euro": # special case for monetary values: Cast to float to ensure # the decimal point is a dot (instead of a comma) euro_value = row[csv_column.index] try: euro = locale.atof(euro_value) if euro.is_integer(): euro = int(euro) current_row[csv_column.column_type] = str(euro) except ValueError: msg = ERROR_MSGS["locale"].format( euro_value, csv_column.index) oat.print_r(msg) sys.exit() else: current_row[csv_column.column_type] = row[csv_column.index] else: current_row[csv_column.column_type] = "NA" # include crossref metadata crossref_result = oat.get_metadata_from_crossref(doi) if crossref_result["success"]: print "Crossref: DOI resolved: " + doi current_row["indexed_in_crossref"] = "TRUE" data = crossref_result["data"] for key, value in data.iteritems(): if value is not None: if key == "journal_full_title": unified_value = oat.get_unified_journal_title(value) if unified_value != value: msg = INFO_MSGS["unify"].format( "journal title", value, unified_value) oat.print_b(msg) new_value = unified_value elif key == "publisher": unified_value = oat.get_unified_publisher_name(value) if unified_value != value: msg = INFO_MSGS["unify"].format( "publisher name", value, unified_value) oat.print_b(msg) new_value = unified_value else: new_value = value else: new_value = "NA" if args.verbose: print(u"WARNING: Element '{}' not found in in " + "response for doi {}.").format(key, doi) old_value = current_row[key] current_row[key] = column_map[key].check_overwrite( old_value, new_value) else: error_msg = ("Crossref: Error while trying to resolve DOI " + doi + ": " + crossref_result["error_msg"]) oat.print_r(error_msg) error_messages.append("Line {}: {}".format(row_num, error_msg)) current_row["indexed_in_crossref"] = "FALSE" # include pubmed metadata pubmed_result = oat.get_metadata_from_pubmed(doi) if pubmed_result["success"]: print "Pubmed: DOI resolved: " + doi data = pubmed_result["data"] for key, value in data.iteritems(): if value is not None: new_value = value else: new_value = "NA" if args.verbose: print(u"WARNING: Element '{}' not found in in " + "response for doi {}.").format(key, doi) old_value = current_row[key] current_row[key] = column_map[key].check_overwrite( old_value, new_value) else: error_msg = ("Pubmed: Error while trying to resolve DOI " + doi + ": " + pubmed_result["error_msg"]) oat.print_r(error_msg) error_messages.append("Line {}: {}".format(row_num, error_msg)) # lookup in DOAJ. try the EISSN first, then ISSN and finally print ISSN if current_row["doaj"] != "TRUE": issns = [] if current_row["issn_electronic"] != "NA": issns.append(current_row["issn_electronic"]) if current_row["issn"] != "NA": issns.append(current_row["issn"]) if current_row["issn_print"] != "NA": issns.append(current_row["issn_print"]) for issn in issns: doaj_res = oat.lookup_journal_in_doaj( issn, args.bypass_cert_verification) if doaj_res["data_received"]: if doaj_res["data"]["in_doaj"]: msg = "DOAJ: Journal ISSN ({}) found in DOAJ ('{}')." print msg.format(issn, doaj_res["data"]["title"]) current_row["doaj"] = "TRUE" break else: msg = "DOAJ: Journal ISSN ({}) not found in DOAJ." current_row["doaj"] = "FALSE" print msg.format(issn) else: msg = "DOAJ: Error while trying to look up ISSN {}: {}" msg_fmt = msg.format(issn, doaj_res["error_msg"]) oat.print_r(msg_fmt) error_messages.append("Line {}: {}".format( row_num, msg_fmt)) enriched_content.append(current_row.values()) csv_file.close() with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, quotemask, True, True) writer.write_rows(enriched_content) if not error_messages: oat.print_g("Metadata enrichment successful, no errors occured") else: oat.print_r("There were errors during the enrichment process:\n") for msg in error_messages: print msg + "\n"
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) args = parser.parse_args() for file_path in [APC_DE_FILE, TA_FILE]: with open(file_path, "r") as path: reader = csv.DictReader(path) oat.print_b("Preparing mapping tables from " + file_path + "...") for line in reader: data = { "journal_full_title": line["journal_full_title"], "publisher": line["publisher"], "is_hybrid": line["is_hybrid"], "count": 1 } for issn_type in ISSN_DICTS.keys(): issn = line[issn_type] if issn not in ISSN_DICTS[issn_type]: ISSN_DICTS[issn_type][issn] = data else: ISSN_DICTS[issn_type][issn]["count"] += 1 if reader.line_num % 10000 == 0: oat.print_b(str(reader.line_num) + " lines processed") modified_content = [] header = None with open(args.csv_file) as csv_file: reader = csv.DictReader(csv_file) header = list(reader.fieldnames) stopped = False for line in reader: if stopped: modified_content.append(line) continue for issn_type in ISSN_DICTS.keys(): issn = line[issn_type] if not oat.has_value(issn): continue if issn in ISSN_DICTS[issn_type]: for field_type in [ "is_hybrid", "publisher", "journal_full_title" ]: new_value = line[field_type] established_value = ISSN_DICTS[issn_type][issn][ field_type] if new_value != established_value and not is_whitelisted( field_type, new_value, established_value, line["issn"], line["issn_print"], line["issn_electronic"], line["issn_l"]): msg = MISMATCH_MSG.format( reader.line_num, oat.colorize(field_type, "cyan"), issn_type, issn, line["is_hybrid"], line["publisher"], line["journal_full_title"], oat.colorize( str(ISSN_DICTS[issn_type][issn]["count"]), "cyan"), ISSN_DICTS[issn_type][issn]["is_hybrid"], ISSN_DICTS[issn_type][issn]["publisher"], ISSN_DICTS[issn_type][issn] ["journal_full_title"]) print(msg) ask_msg = CORRECT_MSG.format( field_type, oat.colorize(established_value, "green"), field_type, oat.colorize(established_value, "green")) ezb_msg = None ret = input(ask_msg) while ret not in ["1", "2", "3", "4"]: if ret == "5": if ezb_msg is None: ezb_msg = _prepare_ezb_info(issn) print(ezb_msg) ret = input( "Please select an option from 1 to 5 > ") print("\n\n\n\n") if ret in ["1", "2"]: line[field_type] = established_value if ret in ["2", "4"]: stopped = True break modified_content.append(line) modified_lines = [header] for line in modified_content: modified_lines.append(list(line.values())) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True, False) writer.write_rows(modified_lines)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("index", type=int, help=ARG_HELP_STRINGS["index"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-m", "--min_ratio", type=float, help=ARG_HELP_STRINGS["min_ratio"], default=0.0) args = parser.parse_args() if args.min_ratio < 0.0 or args.min_ratio > 1.0: oat.print_r("Error: min_ratio parameter must be a float between 0.0 and 1.0") sys.exit() enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" print(msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() header, content = oat.get_csv_file_content(args.csv_file, enc) header = header.pop() entities = [] line_num = 0 msg = "Processed {} entries in column '{}', {} unique entities found." last_msg = None for line in content: line_num += 1 if line[args.index] not in entities: entities.append(line[args.index]) if line_num == len(content) or line_num % 100 == 0: last_msg = msg.format(line_num, header[args.index], len(entities)) print(last_msg, end="\r") print(last_msg) sim_pairs = [] n = len(entities) - 1 num_pairs = int((n*n + n) / 2) msg = ("Calculated Levenshtein ratio for {} out of {} possible entity combinations ({}%), " + "{} have passed the minimum ratio so far.") last_msg = None num_calcs = 0 while entities: first_part = entities.pop(0) for second_part in entities: lev_ratio = ratio(first_part, second_part) num_calcs += 1 if lev_ratio >= args.min_ratio: sim_pairs.append([first_part, second_part, str(lev_ratio)]) if num_calcs == num_pairs or num_calcs % 100 == 0: last_msg = msg.format(num_calcs, num_pairs, round(num_calcs/num_pairs * 100, 1), len(sim_pairs)) print(last_msg, end="\r") print(last_msg) sim_pairs.sort(key=lambda x: x[2], reverse=True) sim_pairs.insert(0, ["first_item", "second_item", "levenshtein_ratio"]) with open("out.csv", "w") as out_file: writer = oat.OpenAPCUnicodeWriter(out_file) writer.write_rows(sim_pairs)
def main(): parser = argparse.ArgumentParser() parser.add_argument("apc_file", help=ARG_HELP_STRINGS["apc_file"]) parser.add_argument("issn_l_file", help=ARG_HELP_STRINGS["issn_l_file"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if len(reduced) > 0: print("Error: A quotemask may only contain the letters 't' and" + "'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] enc = None if args.encoding: try: codec = codecs.lookup(args.encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" oat.print_g(msg.format(args.encoding, codec.name)) enc = args.encoding except LookupError: print("Error: '" + args.encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() header, content = oat.get_csv_file_content(args.apc_file, enc) oat.print_g("Preparing mapping table...") itself = other = 0 issn_l_re = re.compile( "^(?P<issn>\d{4}-\d{3}[\dxX])\t(?P<issn_l>\d{4}-\d{3}[\dxX])$") issn_l_file = open(args.issn_l_file, "r") issn_l_dict = {} for i, line in enumerate(issn_l_file): if i % 100000 == 0: print(str(i) + " lines processed.") match = issn_l_re.match(line) if match: match_dict = match.groupdict() issn_l_dict[match_dict['issn']] = match_dict['issn_l'] if match_dict['issn'] == match_dict['issn_l']: itself += 1 else: other += 1 print( str(itself) + " ISSNs pointing to itself as ISSN-L, " + str(other) + " to another value.") oat.print_g("Starting enrichment...") issn_matches = issn_p_matches = issn_e_matches = unmatched = different = corrections = 0 enriched_lines = [] for line in content: if len(line) == 0: enriched_lines.append(line) continue issn = reformat_issn(line[7]) issn_p = reformat_issn(line[8]) issn_e = reformat_issn(line[9]) target = None if issn in issn_l_dict: target = issn_l_dict[issn] corrected_target = oat.get_corrected_issn_l(target) if corrected_target != target: corrections += 1 line[10] = corrected_target issn_matches += 1 elif issn_p in issn_l_dict: target = issn_l_dict[issn_p] corrected_target = oat.get_corrected_issn_l(target) if corrected_target != target: corrections += 1 line[10] = corrected_target issn_p_matches += 1 elif issn_e in issn_l_dict: target = issn_l_dict[issn_e] corrected_target = oat.get_corrected_issn_l(target) if corrected_target != target: corrections += 1 line[10] = corrected_target issn_e_matches += 1 else: unmatched += 1 if target is not None and target not in [issn, issn_p, issn_e]: different += 1 enriched_lines.append(line) msg = ("{} issn_l values mapped by issn, {} by issn_p, {} by issn_e. {} " + "could not be assigned.\n{} issn_l values were corrected during " + "the process.\n In {} cases the ISSN-L was different from all " + "existing ISSN values") print( msg.format(issn_matches, issn_p_matches, issn_e_matches, unmatched, corrections, different)) with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, True) writer.write_rows(header + enriched_lines)
def write_out_file(ins_header, ins_content): with open("out.csv", "w") as out_file: quote_mask = [False for x in range(7)] writer = oat.OpenAPCUnicodeWriter(out_file, quote_mask, False, False) writer.write_rows(ins_header + ins_content)
def main(): parser = argparse.ArgumentParser() parser.add_argument("csv_file", help=ARG_HELP_STRINGS["csv_file"]) parser.add_argument("column", type=int, help=ARG_HELP_STRINGS["column"]) parser.add_argument("other_csv_file", nargs="?", help=ARG_HELP_STRINGS["other_csv_file"]) parser.add_argument("other_column", type=int, nargs="?", help=ARG_HELP_STRINGS["other_column"]) parser.add_argument("-e2", "--other_encoding", help=ARG_HELP_STRINGS["other_encoding"]) parser.add_argument("-e", "--encoding", help=ARG_HELP_STRINGS["encoding"]) parser.add_argument("-i", "--ignore_case", action="store_true", default=False, help=ARG_HELP_STRINGS["ignore_case"]) parser.add_argument("-q", "--quotemask", help=ARG_HELP_STRINGS["quotemask"]) parser.add_argument("-o", "--openapc_quote_rules", help=ARG_HELP_STRINGS["openapc_quote_rules"], action="store_true", default=False) args = parser.parse_args() quote_rules = args.openapc_quote_rules encs = [] #CSV file encodings for encoding in [args.encoding, args.other_encoding]: if encoding: try: codec = codecs.lookup(encoding) msg = "Encoding '{}' found in Python's codec collection as '{}'" print(msg.format(encoding, codec.name)) except LookupError: print( "Error: '" + encoding + "' not found Python's " + "codec collection. Either look for a valid name here " + "(https://docs.python.org/2/library/codecs.html#standard-" + "encodings) or omit this argument to enable automated " + "guessing.") sys.exit() encs.append(encoding) mask = None if args.quotemask: reduced = args.quotemask.replace("f", "").replace("t", "") if reduced: print( "Error: A quotemask may only contain the letters 't' and 'f'!") sys.exit() mask = [True if x == "t" else False for x in args.quotemask] header, content = oat.get_csv_file_content(args.csv_file, enc=encs[0]) column = args.column if not args.other_csv_file: rearranged_content = header + sorted(content, key=lambda x: x[column]) else: rearranged_content = [] _, second_content = oat.get_csv_file_content(args.other_csv_file, enc=encs[1]) other_column = column # default: use same column index as in first file if args.other_column: other_column = args.other_column for other_row in second_content: if args.ignore_case: matching_rows = [ row for row in content if row[column].lower() == other_row[other_column].lower() ] else: matching_rows = [ row for row in content if row[column] == other_row[other_column] ] rearranged_content += matching_rows for matching_row in matching_rows: content.remove(matching_row) unmatched_msg = ( "{} rows could not be rearranged (unmatched in second csv file) " + "and were appended to the end of the result file " + "in original order.") if content: oat.print_y(unmatched_msg.format(len(content))) else: oat.print_g("All rows matched.") rearranged_content = header + rearranged_content + content # append any unmatched rows with open('out.csv', 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, mask, quote_rules, False) writer.write_rows(rearranged_content)
def main(): parser = argparse.ArgumentParser() parser.add_argument("new_file", help=ARG_HELP_STRINGS["new_file"]) parser.add_argument("target_file", help=ARG_HELP_STRINGS["new_file"]) parser.add_argument('cost_tolerance', type=float, help=ARG_HELP_STRINGS["cost_tolerance"]) parser.add_argument('enriched_files', nargs='+', help=ARG_HELP_STRINGS["enriched_files"]) parser.add_argument('-b', '--batch', type=int, help=ARG_HELP_STRINGS["batch"]) args = parser.parse_args() target_file_name = get_filename(args.target_file) new_file_name = get_filename(args.new_file) for path in args.enriched_files: if not os.path.isfile(path): oat.print_r('Error: "' + path + '" is no valid file path!') sys.exit() ENRICHED_FILES[path] = {"modified": False, "file_name": get_filename(path)} ENRICHED_FILES[path]["header"], ENRICHED_FILES[path]["content"] = oat.get_csv_file_content(path, enc="utf-8", force_header=True) target_header, target_content = oat.get_csv_file_content(args.target_file, enc="utf-8", force_header=True) new_header, new_content = oat.get_csv_file_content(args.new_file, enc="utf-8", force_header=True) ud_header, ud_content = oat.get_csv_file_content(UD_FILE, enc="utf-8", force_header=True) duplicates = [] target_dois = [line[3] for line in target_content] for new_index, line in enumerate(new_content): doi = line[3] if doi == "NA" or doi not in target_dois: continue else: target_index = get_duplicate_index(target_content, doi) duplicates.append((new_index, target_index)) count = 0 for pair in duplicates: new_line = new_content[pair[0]] target_line = target_content[pair[1]] doi = target_line[3] new_cost = float(new_line[2]) target_cost = float(target_line[2]) if new_cost >= target_cost: deviation = (new_cost - target_cost) / new_cost else: deviation = (target_cost - new_cost) / target_cost oat.print_b("Duplicate found:") print("In new file " + new_file_name + ":") print(",".join(new_line)) print("In target file " + target_file_name + ":") print(",".join(target_line)) if new_line[0] != target_line[0]: msg = 'Institutional mismatch "{}"/"{}". Lines will be deleted and added to the unresolved duplicates file.' oat.print_r(msg.format(new_line[0],target_line[0])) new_content[pair[0]] = list(EMPTY_LINE) target_content[pair[1]] = REPLACEMENT ud_content += [target_line] ud_content += [new_line] path, index = find_in_enriched_files(doi) ENRICHED_FILES[path]["content"][index] = list(EMPTY_LINE) ENRICHED_FILES[path]["modified"] = True elif deviation <= args.cost_tolerance: msg = "Cost deviation between {} and {} is below tolerance threshold ({} <= {}). Entries are treated as equal, only the new one will be deleted." oat.print_g(msg.format(new_cost, target_cost, deviation, args.cost_tolerance)) new_content[pair[0]] = list(EMPTY_LINE) else: msg = "Cost deviation between {} and {} exceeds tolerance threshold ({} > {}). Entries are treated as different, both will be deleted." oat.print_y(msg.format(new_cost, target_cost, deviation, args.cost_tolerance)) new_content[pair[0]] = list(EMPTY_LINE) target_content[pair[1]] = REPLACEMENT path, index = find_in_enriched_files(doi) ENRICHED_FILES[path]["content"][index] = list(EMPTY_LINE) ENRICHED_FILES[path]["modified"] = True count += 1 if args.batch and count >= args.batch: break while REPLACEMENT in target_content: target_content.remove(REPLACEMENT) with open(args.target_file, 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(target_header + target_content) with open(args.new_file, 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(new_header + new_content) with open(UD_FILE, 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(ud_header + ud_content) for path, enriched_file in ENRICHED_FILES.items(): if enriched_file["modified"]: with open(path, 'w') as out: writer = oat.OpenAPCUnicodeWriter(out, QUOTE_MASK, True, True) writer.write_rows(enriched_file["header"] + enriched_file["content"])