def __call__(self, img):
     """
     Args:
         img (numpy ndarray): Image to be scaled.
     Returns:
         numpy ndarray: Rescaled image.
     """
     return F.resize(img, self.size, self.interpolation)
 def __call__(self, img):
     """
     Args:
         img (numpy ndarray): Image to be scaled.
     Returns:
         numpy ndarray: Rescaled image.
     """
     percent = float(self.size) / min(img.shape[0], img.shape[1])
     resized_width = int(round(img.shape[1] * percent))
     resized_height = int(round(img.shape[0] * percent))
     return F.resize(img, (resized_height, resized_width),
                     self.interpolation)
Exemple #3
0
 def __call__(self, imgs):
     """
     Args:
         imgs (numpy ndarray): Image sequence (time*height*width*channel) to be scaled.
     Returns:
         numpy ndarray: Rescaled image sequence.
     """
     # Apply to all images
     output_imgs = []
     for I in imgs:
         output_imgs.append(F.resize(I, self.size, self.interpolation))
     return np.array(output_imgs)