def run_mlp(): # # define the model layers # layer1 = Dense(input_size=784, output_size=1000, activation='rectifier') # layer2 = Dense(inputs_hook=(1000, layer1.get_outputs()), output_size=1000, activation='rectifier') # classlayer3 = SoftmaxLayer(inputs_hook=(1000, layer2.get_outputs()), output_size=10, out_as_probs=False) # # add the layers to the prototype # mlp = Prototype(layers=[layer1, layer2, classlayer3]) # test the new way to automatically fill in inputs_hook for models mlp = Prototype() mlp.add(Dense(input_size=784, output_size=1000, activation='rectifier', noise='dropout')) mlp.add(Dense(output_size=1500, activation='tanh', noise='dropout')) mlp.add(SoftmaxLayer(output_size=10)) mnist = MNIST() optimizer = AdaDelta(model=mlp, dataset=mnist, epochs=10) optimizer.train() test_data, test_labels = mnist.test_inputs, mnist.test_targets test_data = test_data[:25] test_labels = test_labels[:25] # use the run function! yhat = mlp.run(test_data) print('-------') print('Prediction: %s' % str(yhat)) print('Actual: %s' % str(test_labels.astype('int32')))
def run_mlp(): # # define the model layers # layer1 = BasicLayer(input_size=784, output_size=1000, activation='rectifier') # layer2 = BasicLayer(inputs_hook=(1000, layer1.get_outputs()), output_size=1000, activation='rectifier') # classlayer3 = SoftmaxLayer(inputs_hook=(1000, layer2.get_outputs()), output_size=10, out_as_probs=False) # # add the layers to the prototype # mlp = Prototype(layers=[layer1, layer2, classlayer3]) # test the new way to automatically fill in inputs_hook for models mlp = Prototype() mlp.add(BasicLayer(input_size=784, output_size=1000, activation="rectifier", noise="dropout")) mlp.add(BasicLayer(output_size=1500, activation="tanh", noise="dropout")) mlp.add(SoftmaxLayer(output_size=10)) mnist = MNIST() optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=10) optimizer.train() test_data, test_labels = mnist.getSubset(subset=TEST) test_data = test_data[:25].eval() test_labels = test_labels[:25].eval() # use the run function! yhat = mlp.run(test_data) print("-------") print("Prediction: %s" % str(yhat)) print("Actual: %s" % str(test_labels.astype("int32")))
def build_model(): # add layers one-by-one to a Prototype container to build neural net # inputs_hook created automatically by Prototype; thus, no need to specify mlp = Prototype() mlp.add(BasicLayer(input_size=28*28, output_size=512, activation='rectifier', noise='dropout')) mlp.add(BasicLayer(output_size=512, activation='rectifier', noise='dropout')) mlp.add(SoftmaxLayer(output_size=10)) return mlp
def sequential_add_layers(): # This method is to demonstrate adding layers one-by-one to a Prototype container. # As you can see, inputs_hook are created automatically by Prototype so we don't need to specify! mlp = Prototype() mlp.add(BasicLayer(input_size=28*28, output_size=1000, activation='rectifier', noise='dropout', noise_level=0.5)) mlp.add(BasicLayer(output_size=512, activation='rectifier', noise='dropout', noise_level=0.5)) mlp.add(SoftmaxLayer(output_size=10)) return mlp
def main(): # First, let's create a simple feedforward MLP with one hidden layer as a Prototype. mlp = Prototype() mlp.add( BasicLayer(input_size=28 * 28, output_size=1000, activation='rectifier', noise='dropout')) mlp.add(SoftmaxLayer(output_size=10)) # Now, we get to choose what values we want to monitor, and what datasets we would like to monitor on! # Each Model (in our case, the Prototype), has a get_monitors method that will return a useful # dictionary of {string_name: monitor_theano_expression} for various computations of the model we might # care about. By default, this method returns an empty dictionary - it was the model creator's job to # include potential monitor values. mlp_monitors = mlp.get_monitors() mlp_channel = MonitorsChannel(name="error") for name, expression in mlp_monitors.items(): mlp_channel.add( Monitor(name=name, expression=expression, train=True, valid=True, test=True)) # create some monitors for statistics about the hidden and output weights! # let's look at the mean, variance, and standard deviation of the weights matrices. weights_channel = MonitorsChannel(name="weights") hiddens_1 = mlp[0].get_params()[0] hiddens1_mean = T.mean(hiddens_1) weights_channel.add( Monitor(name="hiddens_mean", expression=hiddens1_mean, train=True)) hiddens_2 = mlp[1].get_params()[0] hiddens2_mean = T.mean(hiddens_2) weights_channel.add( Monitor(name="out_mean", expression=hiddens2_mean, train=True)) # create our plot object to do live plotting! plot = Plot(bokeh_doc_name="Monitor Tutorial", monitor_channels=[mlp_channel, weights_channel], open_browser=True) # use SGD optimizer optimizer = SGD(model=mlp, dataset=MNIST(concat_train_valid=False), n_epoch=500, save_frequency=100, batch_size=600, learning_rate=.01, lr_decay=False, momentum=.9, nesterov_momentum=True) # train, with the plot! optimizer.train(plot=plot)
def create_mlp(): # define the model layers relu_layer1 = BasicLayer(input_size=784, output_size=1000, activation='rectifier') relu_layer2 = BasicLayer(inputs_hook=(1000, relu_layer1.get_outputs()), output_size=1000, activation='rectifier') class_layer3 = SoftmaxLayer(inputs_hook=(1000, relu_layer2.get_outputs()), output_size=10, out_as_probs=False) # add the layers as a Prototype mlp = Prototype(layers=[relu_layer1, relu_layer2, class_layer3]) mnist = MNIST() optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) optimizer.train() test_data, test_labels = mnist.getSubset(TEST) test_data = test_data[:25].eval() test_labels = test_labels[:25].eval() # use the run function! preds = mlp.run(test_data) log.info('-------') log.info("predicted: %s",str(preds)) log.info("actual: %s",str(test_labels.astype('int32')))
def sequential_add_layers(): # This method is to demonstrate adding layers one-by-one to a Prototype container. # As you can see, inputs_hook are created automatically by Prototype so we don't need to specify! mlp = Prototype() mlp.add( BasicLayer(input_size=28 * 28, output_size=1000, activation='rectifier', noise='dropout', noise_level=0.5)) mlp.add( BasicLayer(output_size=512, activation='rectifier', noise='dropout', noise_level=0.5)) mlp.add(SoftmaxLayer(output_size=10)) return mlp
def add_list_layers(): # You can also add lists of layers at a time (or as initialization) to a Prototype! This lets you specify # more complex interactions between layers! hidden1 = BasicLayer(input_size=28 * 28, output_size=512, activation='rectifier', noise='dropout') hidden2 = BasicLayer(inputs_hook=(512, hidden1.get_outputs()), output_size=512, activation='rectifier', noise='dropout') class_layer = SoftmaxLayer(inputs_hook=(512, hidden2.get_outputs()), output_size=10) mlp = Prototype([hidden1, hidden2, class_layer]) return mlp
def main(): # First, let's create a simple feedforward MLP with one hidden layer as a Prototype. mlp = Prototype() mlp.add(BasicLayer(input_size=28*28, output_size=1000, activation='rectifier', noise='dropout')) mlp.add(SoftmaxLayer(output_size=10)) # Now, we get to choose what values we want to monitor, and what datasets we would like to monitor on! # Each Model (in our case, the Prototype), has a get_monitors method that will return a useful # dictionary of {string_name: monitor_theano_expression} for various computations of the model we might # care about. By default, this method returns an empty dictionary - it was the model creator's job to # include potential monitor values. mlp_monitors = mlp.get_monitors() mlp_channel = MonitorsChannel(name="error") for name, expression in mlp_monitors.items(): mlp_channel.add(Monitor(name=name, expression=expression, train=True, valid=True, test=True)) # create some monitors for statistics about the hidden and output weights! # let's look at the mean, variance, and standard deviation of the weights matrices. weights_channel = MonitorsChannel(name="weights") hiddens_1 = mlp[0].get_params()[0] hiddens1_mean = T.mean(hiddens_1) weights_channel.add(Monitor(name="hiddens_mean", expression=hiddens1_mean, train=True)) hiddens_2 = mlp[1].get_params()[0] hiddens2_mean = T.mean(hiddens_2) weights_channel.add(Monitor(name="out_mean", expression=hiddens2_mean, train=True)) # create our plot object to do live plotting! plot = Plot(bokeh_doc_name="Monitor Tutorial", monitor_channels=[mlp_channel, weights_channel], open_browser=True) # use SGD optimizer optimizer = SGD(model=mlp, dataset=MNIST(concat_train_valid=False), n_epoch=500, save_frequency=100, batch_size=600, learning_rate=.01, lr_decay=False, momentum=.9, nesterov_momentum=True) # train, with the plot! optimizer.train(plot=plot)
config_root_logger() # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = Dense(inputs=((None, 28 * 28), matrix("x")), outputs=1000, activation='linear') layer1_act = Activation(inputs=((None, 1000), layer1.get_outputs()), activation='relu') # create the softmax classifier layer2 = Softmax(inputs=((None, 1000), layer1_act.get_outputs()), outputs=10, out_as_probs=True) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer1_act, layer2]) # define the loss function loss = Neg_LL(inputs=mlp.get_outputs(), targets=vector("y", dtype="int64"), one_hot=False) # make an optimizer to train it (AdaDelta is a good default) # optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) optimizer = AdaDelta(dataset=mnist, loss=loss, epochs=20) # perform training! # optimizer.train() mlp.train(optimizer) # test it on some images! test_data, test_labels = mnist.test_inputs, mnist.test_targets test_data = test_data[:25]
from opendeep.log import config_root_logger config_root_logger() # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = Dense(inputs=((None, 28*28), matrix("x")), outputs=1000, activation='linear') layer1_act = Activation(inputs=((None, 1000), layer1.get_outputs()), activation='relu') # create the softmax classifier layer2 = Softmax(inputs=((None, 1000), layer1_act.get_outputs()), outputs=10, out_as_probs=True) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer1_act, layer2]) # define the loss function loss = Neg_LL(inputs=mlp.get_outputs(), targets=vector("y", dtype="int64"), one_hot=False) #plot the loss if BOKEH_AVAILABLE: plot = Plot("mlp_mnist", monitor_channels=Monitor("loss", loss.get_loss()), open_browser=True) else: plot = None # make an optimizer to train it (AdaDelta is a good default) # optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) optimizer = AdaDelta(dataset=mnist, loss=loss, epochs=20) # perform training! # optimizer.train() mlp.train(optimizer, plot=plot)
logger.config_root_logger() log = logging.getLogger(__name__) log.info("Creating MLP!") # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = BasicLayer(input_size=28 * 28, output_size=1000, activation='relu') # create the softmax classifier layer2 = SoftmaxLayer(inputs_hook=(1000, layer1.get_outputs()), output_size=10, out_as_probs=False) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer2]) # make an optimizer to train it (AdaDelta is a good default) optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) # perform training! optimizer.train() # test it on some images! test_data, test_labels = mnist.getSubset(subset=TEST) test_data = test_data[:25].eval() test_labels = test_labels[:25].eval() # use the run function! preds = mlp.run(test_data) print('-------') print(preds) print(test_labels.astype('int32')) print() print()
import logging from opendeep.log import config_root_logger config_root_logger() log = logging.getLogger(__name__) log.info("Creating MLP!") # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = Dense(input_size=28 * 28, output_size=1000, activation='relu') # create the softmax classifier layer2 = SoftmaxLayer(inputs_hook=(1000, layer1.get_outputs()), output_size=10, out_as_probs=False) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer2]) # make an optimizer to train it (AdaDelta is a good default) # optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) optimizer = AdaDelta(dataset=mnist, epochs=20) # perform training! # optimizer.train() mlp.train(optimizer) # test it on some images! test_data, test_labels = mnist.test_inputs, mnist.test_targets test_data = test_data[:25] test_labels = test_labels[:25] # use the run function! preds = mlp.run(test_data) print('-------') print(preds)
# set up the logging environment to display outputs (optional) # although this is recommended over print statements everywhere import logging import opendeep.log.logger as logger logger.config_root_logger() log = logging.getLogger(__name__) log.info("Creating MLP!") # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = BasicLayer(input_size=28*28, output_size=1000, activation='relu') # create the softmax classifier layer2 = SoftmaxLayer(inputs_hook=(1000, layer1.get_outputs()), output_size=10, out_as_probs=False) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer2]) # make an optimizer to train it (AdaDelta is a good default) optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) # perform training! optimizer.train() # test it on some images! test_data, test_labels = mnist.getSubset(subset=TEST) test_data = test_data[:25].eval() test_labels = test_labels[:25].eval() # use the run function! preds = mlp.run(test_data) print('-------') print(preds) print(test_labels.astype('int32')) print() print()
# set up the logging environment to display outputs (optional) # although this is recommended over print statements everywhere import logging import opendeep.log.logger as logger logger.config_root_logger() log = logging.getLogger(__name__) log.info("Creating MLP!") # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = BasicLayer(input_size=28*28, output_size=1000, activation='relu') # create the softmax classifier layer2 = SoftmaxLayer(inputs_hook=(1000, layer1.get_outputs()), output_size=10, out_as_probs=False) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer2]) # make an optimizer to train it (AdaDelta is a good default) optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) # perform training! optimizer.train() # test it on some images! test_data = mnist.getDataByIndices(indices=range(25), subset=TEST) # use the predict function! preds = mlp.predict(test_data) print '-------' print preds print mnist.getLabelsByIndices(indices=range(25), subset=TEST).astype('int32') print print del mnist del mlp
# set up the logging environment to display outputs (optional) # although this is recommended over print statements everywhere import logging from opendeep.log import config_root_logger config_root_logger() log = logging.getLogger(__name__) log.info("Creating MLP!") # grab the MNIST dataset mnist = MNIST() # create the basic layer layer1 = Dense(input_size=28*28, output_size=1000, activation='relu') # create the softmax classifier layer2 = SoftmaxLayer(inputs_hook=(1000, layer1.get_outputs()), output_size=10, out_as_probs=False) # create the mlp from the two layers mlp = Prototype(layers=[layer1, layer2]) # make an optimizer to train it (AdaDelta is a good default) # optimizer = AdaDelta(model=mlp, dataset=mnist, n_epoch=20) optimizer = AdaDelta(dataset=mnist, epochs=20) # perform training! # optimizer.train() mlp.train(optimizer) # test it on some images! test_data, test_labels = mnist.test_inputs, mnist.test_targets test_data = test_data[:25] test_labels = test_labels[:25] # use the run function! preds = mlp.run(test_data) print('-------') print(preds)