def run(self, outputs={}): start_time = system.now_raw() log.logger.log_json_stage_run(self.name, start_time) log.ODM_INFO('Running %s stage' % self.name) self.process(self.args, outputs) # The tree variable should always be populated at this point if outputs.get('tree') is None: raise Exception( "Assert violation: tree variable is missing from outputs dictionary." ) if self.args.time: system.benchmark(start_time, outputs['tree'].benchmarking, self.name) log.ODM_INFO('Finished %s stage' % self.name) self.update_progress_end() # Last stage? if self.args.end_with == self.name or self.args.rerun == self.name: log.ODM_INFO("No more stages to run") return # Run next stage? elif self.next_stage is not None: self.next_stage.run(outputs)
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Meshing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_meshing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_meshing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_meshing' in args.rerun_from) if not io.file_exists(tree.odm_mesh) or rerun_cell: log.ODM_DEBUG('Writing ODM Mesh file in: %s' % tree.odm_mesh) kwargs = { 'bin': context.odm_modules_path, 'outfile': tree.odm_mesh, 'log': tree.odm_meshing_log, 'max_vertex': self.params.max_vertex, 'oct_tree': self.params.oct_tree, 'samples': self.params.samples, 'solver': self.params.solver, 'verbose': verbose } if not args.use_pmvs: kwargs['infile'] = tree.opensfm_model else: kwargs['infile'] = tree.pmvs_model # run meshing binary system.run( '{bin}/odm_meshing -inputFile {infile} ' '-outputFile {outfile} -logFile {log} ' '-maxVertexCount {max_vertex} -octreeDepth {oct_tree} {verbose} ' '-samplesPerNode {samples} -solverDivide {solver}'.format( **kwargs)) else: log.ODM_WARNING('Found a valid ODM Mesh file in: %s' % tree.odm_mesh) if args.time: system.benchmark(start_time, tree.benchmarking, 'Meshing') log.ODM_INFO('Running ODM Meshing Cell - Finished') return ecto.OK if args.end_with != 'odm_meshing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Texturing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # define paths and create working directories system.mkdir_p(tree.odm_texturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_texturing' in args.rerun_from) if not io.file_exists(tree.odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing ODM Textured file in: %s' % tree.odm_textured_model_obj) # odm_texturing definitions kwargs = { 'bin': context.odm_modules_path, 'out_dir': tree.odm_texturing, 'bundle': tree.opensfm_bundle, 'imgs_path': tree.dataset_resize, 'imgs_list': tree.opensfm_bundle_list, 'model': tree.odm_mesh, 'log': tree.odm_texuring_log, 'resize': self.params.resize, 'resolution': self.params.resolution, 'size': self.params.size } # run texturing binary system.run( '{bin}/odm_texturing -bundleFile {bundle} ' '-imagesPath {imgs_path} -imagesListPath {imgs_list} ' '-inputModelPath {model} -outputFolder {out_dir}/ ' '-textureResolution {resolution} -bundleResizedTo {resize} ' '-textureWithSize {size} -logFile {log}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % tree.odm_textured_model_obj) if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'odm_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Texturing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # define paths and create working directories system.mkdir_p(tree.odm_texturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_texturing' in args.rerun_from) if not io.file_exists(tree.odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing ODM Textured file in: %s' % tree.odm_textured_model_obj) # odm_texturing definitions kwargs = { 'bin': context.odm_modules_path, 'out_dir': tree.odm_texturing, 'bundle': tree.opensfm_bundle, 'imgs_path': tree.dataset_resize, 'imgs_list': tree.opensfm_bundle_list, 'model': tree.odm_mesh, 'log': tree.odm_texuring_log, 'resize': self.params.resize, 'resolution': self.params.resolution, 'size': self.params.size } # run texturing binary system.run('{bin}/odm_texturing -bundleFile {bundle} ' '-imagesPath {imgs_path} -imagesListPath {imgs_list} ' '-inputModelPath {model} -outputFolder {out_dir}/ ' '-textureResolution {resolution} -bundleResizedTo {resize} ' '-textureWithSize {size} -logFile {log}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % tree.odm_textured_model_obj) if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'odm_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Meshing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_meshing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_meshing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_meshing' in args.rerun_from) if not io.file_exists(tree.odm_mesh) or rerun_cell: log.ODM_DEBUG('Writing ODM Mesh file in: %s' % tree.odm_mesh) kwargs = { 'bin': context.odm_modules_path, 'outfile': tree.odm_mesh, 'log': tree.odm_meshing_log, 'max_vertex': self.params.max_vertex, 'oct_tree': self.params.oct_tree, 'samples': self.params.samples, 'solver': self.params.solver, 'verbose': verbose } if not args.use_pmvs: kwargs['infile'] = tree.opensfm_model else: kwargs['infile'] = tree.pmvs_model # run meshing binary system.run('{bin}/odm_meshing -inputFile {infile} ' '-outputFile {outfile} -logFile {log} ' '-maxVertexCount {max_vertex} -octreeDepth {oct_tree} {verbose} ' '-samplesPerNode {samples} -solverDivide {solver}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Mesh file in: %s' % tree.odm_mesh) if args.time: system.benchmark(start_time, tree.benchmarking, 'Meshing') log.ODM_INFO('Running ODM Meshing Cell - Finished') return ecto.OK if args.end_with != 'odm_meshing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Resize Cell') # get inputs args = self.inputs.args tree = self.inputs.tree photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos to resize') return ecto.QUIT if self.params.resize_to <= 0: log.ODM_ERROR('Resize parameter must be greater than 0') return ecto.QUIT # create working directory system.mkdir_p(tree.dataset_resize) log.ODM_DEBUG('Resizing dataset to: %s' % tree.dataset_resize) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'resize') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'resize' in args.rerun_from) # loop over photos if self.params.skip_resize: photos = Pool().map( partial(no_resize, tree.dataset_raw, tree.dataset_resize, rerun_cell), photos) log.ODM_INFO('Copied %s images' % len(photos)) else: photos = Pool().map( partial(resize, tree.dataset_raw, tree.dataset_resize, self.params.resize_to, rerun_cell), photos) log.ODM_INFO('Resized %s images' % len(photos)) # append photos to cell output self.outputs.photos = photos if args.time: system.benchmark(start_time, tree.benchmarking, 'Resizing') log.ODM_INFO('Running ODM Resize Cell - Finished') return ecto.OK if args.end_with != 'resize' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM FilterPoints Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_filterpoints') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_filterpoints' in args.rerun_from) if not os.path.exists(tree.odm_filterpoints): system.mkdir_p(tree.odm_filterpoints) # check if reconstruction was done before if not io.file_exists(tree.filtered_point_cloud) or rerun_cell: if args.fast_orthophoto: inputPointCloud = os.path.join(tree.opensfm, 'reconstruction.ply') elif args.use_opensfm_dense: inputPointCloud = tree.opensfm_model else: inputPointCloud = tree.mve_model confidence = None if not args.use_opensfm_dense and not args.fast_orthophoto: confidence = args.mve_confidence point_cloud.filter(inputPointCloud, tree.filtered_point_cloud, standard_deviation=args.pc_filter, confidence=confidence, verbose=args.verbose) else: log.ODM_WARNING('Found a valid point cloud file in: %s' % tree.filtered_point_cloud) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'MVE') log.ODM_INFO('Running ODM FilterPoints Cell - Finished') return ecto.OK if args.end_with != 'odm_filterpoints' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running OMD PMVS Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'pmvs') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'pmvs' in args.rerun_from) if not io.file_exists(tree.pmvs_model) or rerun_cell: log.ODM_DEBUG('Creating dense pointcloud in: %s' % tree.pmvs_model) kwargs = { 'bin': context.cmvs_opts_path, 'prefix': tree.pmvs_rec_path, 'level': self.params.level, 'csize': self.params.csize, 'thresh': self.params.thresh, 'wsize': self.params.wsize, 'min_imgs': self.params.min_imgs, 'cores': self.params.cores } # generate pmvs2 options system.run('{bin} {prefix}/ {level} {csize} {thresh} {wsize} ' '{min_imgs} {cores}'.format(**kwargs)) # run pmvs2 system.run('%s %s/ option-0000' % (context.pmvs2_path, tree.pmvs_rec_path)) else: log.ODM_WARNING('Found a valid PMVS file in %s' % tree.pmvs_model) outputs.reconstruction = inputs.reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'PMVS') log.ODM_INFO('Running ODM PMVS Cell - Finished') return ecto.OK if args.end_with != 'pmvs' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running OMD PMVS Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'pmvs') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'pmvs' in args.rerun_from) if not io.file_exists(tree.pmvs_model) or rerun_cell: log.ODM_DEBUG('Creating dense pointcloud in: %s' % tree.pmvs_model) kwargs = { 'bin': context.cmvs_opts_path, 'prefix': tree.pmvs_rec_path, 'level': self.params.level, 'csize': self.params.csize, 'thresh': self.params.thresh, 'wsize': self.params.wsize, 'min_imgs': self.params.min_imgs, 'cores': self.params.cores } # generate pmvs2 options system.run('{bin} {prefix}/ {level} {csize} {thresh} {wsize} ' '{min_imgs} {cores}'.format(**kwargs)) # run pmvs2 system.run('%s %s/ option-0000' % (context.pmvs2_path, tree.pmvs_rec_path)) else: log.ODM_WARNING('Found a valid PMVS file in %s' % tree.pmvs_model) if args.time: system.benchmark(start_time, tree.benchmarking, 'PMVS') log.ODM_INFO('Running ODM PMVS Cell - Finished') return ecto.OK if args.end_with != 'pmvs' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree gcpfile = io.join_paths(tree.root_path, self.params.gcp_file) # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) # in case a gcp file it's not provided, let's try to generate it using # images metadata. Internally calls jhead. if not self.params.use_gcp and \ not io.file_exists(tree.odm_georeferencing_coords): log.ODM_WARNING('Warning: No coordinates file. ' 'Generating coordinates file in: %s' % tree.odm_georeferencing_coords) try: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'imgs': tree.dataset_raw, 'imgs_list': tree.opensfm_bundle_list, 'coords': tree.odm_georeferencing_coords, 'log': tree.odm_georeferencing_utm_log } # run UTM extraction binary system.run( '{bin}/odm_extract_utm -imagesPath {imgs}/ ' '-imageListFile {imgs_list} -outputCoordFile {coords} ' '-logFile {log}'.format(**kwargs)) except Exception, e: log.ODM_ERROR( 'Could not generate GCP file from images metadata.' 'Consider rerunning with argument --odm_georeferencing-useGcp' ' and provide a proper GCP file') log.ODM_ERROR(e) return ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM CMVS Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'cmvs') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'cmvs' in args.rerun_from) if not io.file_exists(tree.pmvs_bundle) or rerun_cell: log.ODM_DEBUG('Writing CMVS vis in: %s' % tree.pmvs_bundle) # copy bundle file to pmvs dir from shutil import copyfile copyfile(tree.opensfm_bundle, tree.pmvs_bundle) kwargs = { 'bin': context.cmvs_path, 'prefix': self.inputs.tree.pmvs_rec_path, 'max_images': self.params.max_images, 'cores': self.params.cores } # run cmvs system.run('{bin} {prefix}/ {max_images} {cores}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid CMVS file in: %s' % tree.pmvs_bundle) outputs.reconstruction = inputs.reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'CMVS') log.ODM_INFO('Running ODM CMVS Cell - Finished') return ecto.OK if args.end_with != 'cmvs' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM CMVS Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'cmvs') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'cmvs' in args.rerun_from) if not io.file_exists(tree.pmvs_bundle) or rerun_cell: log.ODM_DEBUG('Writing CMVS vis in: %s' % tree.pmvs_bundle) # copy bundle file to pmvs dir from shutil import copyfile copyfile(tree.opensfm_bundle, tree.pmvs_bundle) kwargs = { 'bin': context.cmvs_path, 'prefix': self.inputs.tree.pmvs_rec_path, 'max_images': self.params.max_images, 'cores': self.params.cores } # run cmvs system.run('{bin} {prefix}/ {max_images} {cores}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid CMVS file in: %s' % tree.pmvs_bundle) if args.time: system.benchmark(start_time, tree.benchmarking, 'CMVS') log.ODM_INFO('Running ODM CMVS Cell - Finished') return ecto.OK if args.end_with != 'cmvs' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree gcpfile = io.join_paths(tree.root_path, self.params.gcp_file) # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) # in case a gcp file it's not provided, let's try to generate it using # images metadata. Internally calls jhead. if not self.params.use_gcp and \ not io.file_exists(tree.odm_georeferencing_coords): log.ODM_WARNING('Warning: No coordinates file. ' 'Generating coordinates file in: %s' % tree.odm_georeferencing_coords) try: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'imgs': tree.dataset_raw, 'imgs_list': tree.opensfm_bundle_list, 'coords': tree.odm_georeferencing_coords, 'log': tree.odm_georeferencing_utm_log } # run UTM extraction binary system.run('{bin}/odm_extract_utm -imagesPath {imgs}/ ' '-imageListFile {imgs_list} -outputCoordFile {coords} ' '-logFile {log}'.format(**kwargs)) except Exception, e: log.ODM_ERROR('Could not generate GCP file from images metadata.' 'Consider rerunning with argument --odm_georeferencing-useGcp' ' and provide a proper GCP file') log.ODM_ERROR(e) return ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVE Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction photos = reconstruction.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start MVE') return ecto.QUIT # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mve') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mve' in args.rerun_from) # check if reconstruction was done before if not io.file_exists(tree.mve_model) or rerun_cell: # cleanup if a rerun if io.dir_exists(tree.mve_path) and rerun_cell: shutil.rmtree(tree.mve_path) # make bundle directory if not io.file_exists(tree.mve_bundle): system.mkdir_p(tree.mve_path) system.mkdir_p(io.join_paths(tree.mve_path, 'bundle')) io.copy(tree.opensfm_image_list, tree.mve_image_list) io.copy(tree.opensfm_bundle, tree.mve_bundle) # mve makescene wants the output directory # to not exists before executing it (otherwise it # will prompt the user for confirmation) if io.dir_exists(tree.mve): shutil.rmtree(tree.mve) # run mve makescene if not io.dir_exists(tree.mve_views): system.run('%s %s %s' % (context.makescene_path, tree.mve_path, tree.mve), env_vars={'OMP_NUM_THREADS': args.max_concurrency}) # Compute mve output scale based on depthmap_resolution max_width = 0 max_height = 0 for photo in photos: max_width = max(photo.width, max_width) max_height = max(photo.height, max_height) max_pixels = args.depthmap_resolution * args.depthmap_resolution if max_width * max_height <= max_pixels: mve_output_scale = 0 else: ratio = float(max_width * max_height) / float(max_pixels) mve_output_scale = int( math.ceil(math.log(ratio) / math.log(4.0))) dmrecon_config = [ "-s%s" % mve_output_scale, "--progress=silent", "--local-neighbors=2", "--force", ] # Run MVE's dmrecon log.ODM_INFO( ' ' ) log.ODM_INFO( ' ,*/** ' ) log.ODM_INFO( ' ,*@%*/@%* ' ) log.ODM_INFO( ' ,/@%******@&*. ' ) log.ODM_INFO( ' ,*@&*********/@&* ' ) log.ODM_INFO( ' ,*@&**************@&* ' ) log.ODM_INFO( ' ,/@&******************@&*. ' ) log.ODM_INFO( ' ,*@&*********************/@&* ' ) log.ODM_INFO( ' ,*@&**************************@&*. ' ) log.ODM_INFO( ' ,/@&******************************&&*, ' ) log.ODM_INFO( ' ,*&&**********************************@&*. ' ) log.ODM_INFO( ' ,*@&**************************************@&*. ' ) log.ODM_INFO( ' ,*@&***************#@@@@@@@@@%****************&&*, ' ) log.ODM_INFO( ' .*&&***************&@@@@@@@@@@@@@@****************@@*. ' ) log.ODM_INFO( ' .*@&***************&@@@@@@@@@@@@@@@@@%****(@@%********@@*. ' ) log.ODM_INFO( ' .*@@***************%@@@@@@@@@@@@@@@@@@@@@#****&@@@@%******&@*, ' ) log.ODM_INFO( ' .*&@****************@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@/*****@@*. ' ) log.ODM_INFO( ' .*@@****************@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%*************@@*. ' ) log.ODM_INFO( ' .*@@****/***********@@@@@&**(@@@@@@@@@@@@@@@@@@@@@@@#*****************%@*, ' ) log.ODM_INFO( ' */@*******@*******#@@@@%*******/@@@@@@@@@@@@@@@@@@@@********************/@(, ' ) log.ODM_INFO( ' ,*@(********&@@@@@@#**************/@@@@@@@#**(@@&/**********************@&* ' ) log.ODM_INFO( ' *#@/*******************************@@@@@***&@&**********************&@*, ' ) log.ODM_INFO( ' *#@#******************************&@@@***@#*********************&@*, ' ) log.ODM_INFO( ' */@#*****************************@@@************************@@*. ' ) log.ODM_INFO( ' *#@/***************************/@@/*********************%@*, ' ) log.ODM_INFO( ' *#@#**************************#@@%******************%@*, ' ) log.ODM_INFO( ' */@#*************************(@@@@@@@&%/********&@*. ' ) log.ODM_INFO( ' *(@(*********************************/%@@%**%@*, ' ) log.ODM_INFO( ' *(@%************************************%@** ' ) log.ODM_INFO( ' **@%********************************&@*, ' ) log.ODM_INFO( ' *(@(****************************%@/* ' ) log.ODM_INFO( ' ,(@%************************#@/* ' ) log.ODM_INFO( ' ,*@%********************&@/, ' ) log.ODM_INFO( ' */@#****************#@/* ' ) log.ODM_INFO( ' ,/@&************#@/* ' ) log.ODM_INFO( ' ,*@&********%@/, ' ) log.ODM_INFO( ' */@#****(@/* ' ) log.ODM_INFO( ' ,/@@@@(* ' ) log.ODM_INFO( ' .**, ' ) log.ODM_INFO('') log.ODM_INFO( "Running dense reconstruction. This might take a while. Please be patient, the process is not dead or hung." ) log.ODM_INFO(" Process is running") system.run( '%s %s %s' % (context.dmrecon_path, ' '.join(dmrecon_config), tree.mve), env_vars={'OMP_NUM_THREADS': args.max_concurrency}) scene2pset_config = ["-F%s" % mve_output_scale] # run scene2pset system.run('%s %s "%s" "%s"' % (context.scene2pset_path, ' '.join(scene2pset_config), tree.mve, tree.mve_model), env_vars={'OMP_NUM_THREADS': args.max_concurrency}) else: log.ODM_WARNING('Found a valid MVE reconstruction file in: %s' % tree.mve_model) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'MVE') log.ODM_INFO('Running ODM MVE Cell - Finished') return ecto.OK if args.end_with != 'mve' else ecto.QUIT
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] if not os.path.exists(tree.odm_report): system.mkdir_p(tree.odm_report) log.ODM_INFO("Exporting shots.geojson") shots_geojson = os.path.join(tree.odm_report, "shots.geojson") if not io.file_exists(shots_geojson) or self.rerun(): # Extract geographical camera shots if reconstruction.is_georeferenced(): shots = get_geojson_shots_from_opensfm( tree.opensfm_reconstruction, utm_srs=reconstruction.get_proj_srs(), utm_offset=reconstruction.georef.utm_offset()) else: # Pseudo geo shots = get_geojson_shots_from_opensfm( tree.opensfm_reconstruction, pseudo_geotiff=tree.odm_orthophoto_tif) if shots: with open(shots_geojson, "w") as fout: fout.write(json.dumps(shots)) log.ODM_INFO("Wrote %s" % shots_geojson) else: log.ODM_WARNING("Cannot extract shots") else: log.ODM_WARNING('Found a valid shots file in: %s' % shots_geojson) if args.skip_report: # Stop right here log.ODM_WARNING("Skipping report generation as requested") return # Augment OpenSfM stats file with our own stats odm_stats_json = os.path.join(tree.odm_report, "stats.json") octx = OSFMContext(tree.opensfm) osfm_stats_json = octx.path("stats", "stats.json") odm_stats = None point_cloud_file = None views_dimension = None if not os.path.exists(odm_stats_json) or self.rerun(): if os.path.exists(osfm_stats_json): with open(osfm_stats_json, 'r') as f: odm_stats = json.loads(f.read()) # Add point cloud stats if os.path.exists(tree.odm_georeferencing_model_laz): point_cloud_file = tree.odm_georeferencing_model_laz views_dimension = "UserData" # pc_info_file should have been generated by cropper pc_info_file = os.path.join( tree.odm_georeferencing, "odm_georeferenced_model.info.json") odm_stats[ 'point_cloud_statistics'] = generate_point_cloud_stats( tree.odm_georeferencing_model_laz, pc_info_file, self.rerun()) else: ply_pc = os.path.join(tree.odm_filterpoints, "point_cloud.ply") if os.path.exists(ply_pc): point_cloud_file = ply_pc views_dimension = "views" pc_info_file = os.path.join(tree.odm_filterpoints, "point_cloud.info.json") odm_stats[ 'point_cloud_statistics'] = generate_point_cloud_stats( ply_pc, pc_info_file, self.rerun()) else: log.ODM_WARNING("No point cloud found") odm_stats['point_cloud_statistics'][ 'dense'] = not args.fast_orthophoto # Add runtime stats total_time = (system.now_raw() - outputs['start_time']).total_seconds() odm_stats['odm_processing_statistics'] = { 'total_time': total_time, 'total_time_human': hms(total_time), 'average_gsd': gsd.opensfm_reconstruction_average_gsd( octx.recon_file(), use_all_shots=reconstruction.has_gcp()), } with open(odm_stats_json, 'w') as f: f.write(json.dumps(odm_stats)) else: log.ODM_WARNING( "Cannot generate report, OpenSfM stats are missing") else: log.ODM_WARNING("Reading existing stats %s" % odm_stats_json) with open(odm_stats_json, 'r') as f: odm_stats = json.loads(f.read()) # Generate overlap diagram if odm_stats.get('point_cloud_statistics' ) and point_cloud_file and views_dimension: bounds = odm_stats['point_cloud_statistics'].get('stats', {}).get( 'bbox', {}).get('native', {}).get('bbox') if bounds: image_target_size = 1400 # pixels osfm_stats_dir = os.path.join(tree.opensfm, "stats") diagram_tiff = os.path.join(osfm_stats_dir, "overlap.tif") diagram_png = os.path.join(osfm_stats_dir, "overlap.png") width = bounds.get('maxx') - bounds.get('minx') height = bounds.get('maxy') - bounds.get('miny') max_dim = max(width, height) resolution = float(max_dim) / float(image_target_size) radius = resolution * math.sqrt(2) # Larger radius for sparse point cloud diagram if not odm_stats['point_cloud_statistics']['dense']: radius *= 10 system.run("pdal translate -i \"{}\" " "-o \"{}\" " "--writer gdal " "--writers.gdal.resolution={} " "--writers.gdal.data_type=uint8_t " "--writers.gdal.dimension={} " "--writers.gdal.output_type=max " "--writers.gdal.radius={} ".format( point_cloud_file, diagram_tiff, resolution, views_dimension, radius)) report_assets = os.path.abspath( os.path.join(os.path.dirname(__file__), "../opendm/report")) overlap_color_map = os.path.join(report_assets, "overlap_color_map.txt") bounds_file_path = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') if (args.crop > 0 or args.boundary) and os.path.isfile(bounds_file_path): Cropper.crop(bounds_file_path, diagram_tiff, get_orthophoto_vars(args), keep_original=False) system.run( "gdaldem color-relief \"{}\" \"{}\" \"{}\" -of PNG -alpha". format(diagram_tiff, overlap_color_map, diagram_png)) # Copy assets for asset in [ "overlap_diagram_legend.png", "dsm_gradient.png" ]: shutil.copy(os.path.join(report_assets, asset), os.path.join(osfm_stats_dir, asset)) # Generate previews of ortho/dsm if os.path.isfile(tree.odm_orthophoto_tif): osfm_ortho = os.path.join(osfm_stats_dir, "ortho.png") generate_png(tree.odm_orthophoto_tif, osfm_ortho, image_target_size) dems = [] if args.dsm: dems.append("dsm") if args.dtm: dems.append("dtm") for dem in dems: dem_file = tree.path("odm_dem", "%s.tif" % dem) if os.path.isfile(dem_file): # Resize first (faster) resized_dem_file = io.related_file_path( dem_file, postfix=".preview") system.run( "gdal_translate -outsize {} 0 \"{}\" \"{}\" --config GDAL_CACHEMAX {}%" .format(image_target_size, dem_file, resized_dem_file, get_max_memory())) log.ODM_INFO("Computing raster stats for %s" % resized_dem_file) dem_stats = get_raster_stats(resized_dem_file) if len(dem_stats) > 0: odm_stats[dem + '_statistics'] = dem_stats[0] osfm_dem = os.path.join(osfm_stats_dir, "%s.png" % dem) colored_dem, hillshade_dem, colored_hillshade_dem = generate_colored_hillshade( resized_dem_file) system.run( "gdal_translate -outsize {} 0 -of png \"{}\" \"{}\" --config GDAL_CACHEMAX {}%" .format(image_target_size, colored_hillshade_dem, osfm_dem, get_max_memory())) for f in [ resized_dem_file, colored_dem, hillshade_dem, colored_hillshade_dem ]: if os.path.isfile(f): os.remove(f) else: log.ODM_WARNING( "Cannot generate overlap diagram, cannot compute point cloud bounds" ) else: log.ODM_WARNING( "Cannot generate overlap diagram, point cloud stats missing") octx.export_report(os.path.join(tree.odm_report, "report.pdf"), odm_stats, self.rerun())
def process(self, args, outputs): outputs['start_time'] = system.now_raw() tree = types.ODM_Tree(args.project_path, args.gcp, args.geo) outputs['tree'] = tree if args.time and io.file_exists(tree.benchmarking): # Delete the previously made file os.remove(tree.benchmarking) with open(tree.benchmarking, 'a') as b: b.write( 'ODM Benchmarking file created %s\nNumber of Cores: %s\n\n' % (system.now(), context.num_cores)) # check if the image filename is supported def valid_image_filename(filename): (pathfn, ext) = os.path.splitext(filename) return ext.lower( ) in context.supported_extensions and pathfn[-5:] != "_mask" # Get supported images from dir def get_images(in_dir): log.ODM_DEBUG(in_dir) entries = os.listdir(in_dir) valid, rejects = [], [] for f in entries: if valid_image_filename(f): valid.append(f) else: rejects.append(f) return valid, rejects def find_mask(photo_path, masks): (pathfn, ext) = os.path.splitext(os.path.basename(photo_path)) k = "{}_mask".format(pathfn) mask = masks.get(k) if mask: # Spaces are not supported due to OpenSfM's mask_list.txt format reqs if not " " in mask: return mask else: log.ODM_WARNING( "Image mask {} has a space. Spaces are currently not supported for image masks." .format(mask)) # get images directory images_dir = tree.dataset_raw # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) log.ODM_INFO('Loading dataset from: %s' % images_dir) # check if we rerun cell or not images_database_file = os.path.join(tree.root_path, 'images.json') if not io.file_exists(images_database_file) or self.rerun(): if not os.path.exists(images_dir): raise system.ExitException( "There are no images in %s! Make sure that your project path and dataset name is correct. The current is set to: %s" % (images_dir, args.project_path)) files, rejects = get_images(images_dir) if files: # create ODMPhoto list path_files = [os.path.join(images_dir, f) for f in files] # Lookup table for masks masks = {} for r in rejects: (p, ext) = os.path.splitext(r) if p[-5:] == "_mask" and ext.lower( ) in context.supported_extensions: masks[p] = r photos = [] with open(tree.dataset_list, 'w') as dataset_list: log.ODM_INFO("Loading %s images" % len(path_files)) for f in path_files: try: p = types.ODM_Photo(f) p.set_mask(find_mask(f, masks)) photos += [p] dataset_list.write(photos[-1].filename + '\n') except PhotoCorruptedException: log.ODM_WARNING( "%s seems corrupted and will not be used" % os.path.basename(f)) # Check if a geo file is available if tree.odm_geo_file is not None and os.path.isfile( tree.odm_geo_file): log.ODM_INFO("Found image geolocation file") gf = GeoFile(tree.odm_geo_file) updated = 0 for p in photos: entry = gf.get_entry(p.filename) if entry: p.update_with_geo_entry(entry) p.compute_opk() updated += 1 log.ODM_INFO("Updated %s image positions" % updated) # GPSDOP override if we have GPS accuracy information (such as RTK) if 'gps_accuracy_is_set' in args: log.ODM_INFO("Forcing GPS DOP to %s for all images" % args.gps_accuracy) for p in photos: p.override_gps_dop(args.gps_accuracy) # Override projection type if args.camera_lens != "auto": log.ODM_INFO("Setting camera lens to %s for all images" % args.camera_lens) for p in photos: p.override_camera_projection(args.camera_lens) # Save image database for faster restart save_images_database(photos, images_database_file) else: raise system.ExitException( 'Not enough supported images in %s' % images_dir) else: # We have an images database, just load it photos = load_images_database(images_database_file) log.ODM_INFO('Found %s usable images' % len(photos)) log.logger.log_json_images(len(photos)) # Create reconstruction object reconstruction = types.ODM_Reconstruction(photos) if tree.odm_georeferencing_gcp and not args.use_exif: reconstruction.georeference_with_gcp( tree.odm_georeferencing_gcp, tree.odm_georeferencing_coords, tree.odm_georeferencing_gcp_utm, tree.odm_georeferencing_model_txt_geo, rerun=self.rerun()) else: reconstruction.georeference_with_gps( tree.dataset_raw, tree.odm_georeferencing_coords, tree.odm_georeferencing_model_txt_geo, rerun=self.rerun()) reconstruction.save_proj_srs( os.path.join(tree.odm_georeferencing, tree.odm_georeferencing_proj)) outputs['reconstruction'] = reconstruction # Try to load boundaries if args.boundary: if reconstruction.is_georeferenced(): outputs['boundary'] = boundary.load_boundary( args.boundary, reconstruction.get_proj_srs()) else: args.boundary = None log.ODM_WARNING( "Reconstruction is not georeferenced, but boundary file provided (will ignore boundary file)" ) # If sfm-algorithm is triangulation, check if photos have OPK if args.sfm_algorithm == 'triangulation': for p in photos: if not p.has_opk(): log.ODM_WARNING( "No omega/phi/kappa angles found in input photos (%s), switching sfm-algorithm to incremental" % p.filename) args.sfm_algorithm = 'incremental' break
def process(self, inputs, outputs): # find a file in the root directory def find(file, dir): for root, dirs, files in os.walk(dir): return '/'.join((root, file)) if file in files else None # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree gcpfile = io.join_paths(tree.root_path, self.params.gcp_file) \ if self.params.gcp_file else find('gcp_list.txt', tree.root_path) geocreated = True verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) # in case a gcp file it's not provided, let's try to generate it using # images metadata. Internally calls jhead. log.ODM_DEBUG(self.params.gcp_file) if not self.params.gcp_file: # and \ # not io.file_exists(tree.odm_georeferencing_coords): log.ODM_WARNING('No coordinates file. ' 'Generating coordinates file: %s' % tree.odm_georeferencing_coords) # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'imgs': tree.dataset_resize, 'imgs_list': tree.opensfm_bundle_list, 'coords': tree.odm_georeferencing_coords, 'log': tree.odm_georeferencing_utm_log, 'verbose': verbose } # run UTM extraction binary extract_utm = system.run_and_return('{bin}/odm_extract_utm -imagesPath {imgs}/ ' '-imageListFile {imgs_list} -outputCoordFile {coords} {verbose} ' '-logFile {log}'.format(**kwargs)) if extract_utm != '': log.ODM_WARNING('Could not generate coordinates file. ' 'Ignore if there is a GCP file. Error: %s' % extract_utm) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_georeferencing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_georeferencing' in args.rerun_from) if not io.file_exists(tree.odm_georeferencing_model_obj_geo) or \ not io.file_exists(tree.odm_georeferencing_model_ply_geo) or rerun_cell: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'bundle': tree.opensfm_bundle, 'imgs': tree.dataset_resize, 'imgs_list': tree.opensfm_bundle_list, 'model': tree.odm_textured_model_obj, 'log': tree.odm_georeferencing_log, 'coords': tree.odm_georeferencing_coords, 'pc_geo': tree.odm_georeferencing_model_ply_geo, 'geo_sys': tree.odm_georeferencing_model_txt_geo, 'model_geo': tree.odm_georeferencing_model_obj_geo, 'size': self.params.img_size, 'gcp': gcpfile, 'verbose': verbose } if args.use_opensfm_pointcloud: kwargs['pc'] = tree.opensfm_model else: kwargs['pc'] = tree.pmvs_model # Check to see if the GCP file exists if not self.params.use_exif and (self.params.gcp_file or find('gcp_list.txt', tree.root_path)): log.ODM_INFO('Found %s' % gcpfile) try: system.run('{bin}/odm_georef -bundleFile {bundle} -imagesPath {imgs} -imagesListPath {imgs_list} ' '-bundleResizedTo {size} -inputFile {model} -outputFile {model_geo} ' '-inputPointCloudFile {pc} -outputPointCloudFile {pc_geo} {verbose} ' '-logFile {log} -georefFileOutputPath {geo_sys} -gcpFile {gcp} ' '-outputCoordFile {coords}'.format(**kwargs)) except Exception: log.ODM_EXCEPTION('Georeferencing failed. ') return ecto.QUIT elif io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO('Running georeferencing with generated coords file.') system.run('{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '-inputPointCloudFile {pc} -outputPointCloudFile {pc_geo} {verbose} ' '-logFile {log} -georefFileOutputPath {geo_sys}'.format(**kwargs)) else: log.ODM_WARNING('Georeferencing failed. Make sure your ' 'photos have geotags in the EXIF or you have ' 'provided a GCP file. ') geocreated = False # skip the rest of the georeferencing if geocreated: # update images metadata geo_ref = types.ODM_GeoRef() geo_ref.parse_coordinate_system(tree.odm_georeferencing_coords) for idx, photo in enumerate(self.inputs.photos): geo_ref.utm_to_latlon(tree.odm_georeferencing_latlon, photo, idx) # convert ply model to LAS reference system geo_ref.convert_to_las(tree.odm_georeferencing_model_ply_geo, tree.odm_georeferencing_pdal) # XYZ point cloud output log.ODM_INFO("Creating geo-referenced CSV file (XYZ format, can be used with GRASS to create DEM)") with open(tree.odm_georeferencing_xyz_file, "wb") as csvfile: csvfile_writer = csv.writer(csvfile, delimiter=",") reachedpoints = False with open(tree.odm_georeferencing_model_ply_geo) as f: for lineNumber, line in enumerate(f): if reachedpoints: tokens = line.split(" ") csv_line = [float(tokens[0])+geo_ref.utm_east_offset, float(tokens[1])+geo_ref.utm_north_offset, tokens[2]] csvfile_writer.writerow(csv_line) if line.startswith("end_header"): reachedpoints = True csvfile.close() else: log.ODM_WARNING('Found a valid georeferenced model in: %s' % tree.odm_georeferencing_model_ply_geo) if args.time: system.benchmark(start_time, tree.benchmarking, 'Georeferencing') log.ODM_INFO('Running ODM Georeferencing Cell - Finished') return ecto.OK if args.end_with != 'odm_georeferencing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Meshing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction # define paths and create working directories system.mkdir_p(tree.odm_meshing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_meshing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_meshing' in args.rerun_from) infile = tree.smvs_model if args.fast_orthophoto: infile = os.path.join(tree.opensfm, 'reconstruction.ply') elif args.use_opensfm_dense: infile = tree.opensfm_model # Create full 3D model unless --skip-3dmodel is set if not args.skip_3dmodel: if not io.file_exists(tree.odm_mesh) or rerun_cell: log.ODM_DEBUG('Writing ODM Mesh file in: %s' % tree.odm_mesh) mesh.screened_poisson_reconstruction( infile, tree.odm_mesh, depth=self.params.oct_tree, samples=self.params.samples, maxVertexCount=self.params.max_vertex, pointWeight=self.params.point_weight, threads=self.params.max_concurrency, verbose=self.params.verbose) else: log.ODM_WARNING('Found a valid ODM Mesh file in: %s' % tree.odm_mesh) # Always generate a 2.5D mesh # unless --use-3dmesh is set. if not args.use_3dmesh: if not io.file_exists(tree.odm_25dmesh) or rerun_cell: log.ODM_DEBUG('Writing ODM 2.5D Mesh file in: %s' % tree.odm_25dmesh) dsm_resolution = gsd.cap_resolution( args.orthophoto_resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0 # Create reference DSM at half ortho resolution dsm_resolution *= 2 # Sparse point clouds benefits from using # a larger resolution value (more radius interolation, less holes) if args.fast_orthophoto: dsm_resolution *= 2 mesh.create_25dmesh(infile, tree.odm_25dmesh, dsm_resolution=dsm_resolution, depth=self.params.oct_tree, maxVertexCount=self.params.max_vertex, samples=self.params.samples, verbose=self.params.verbose, max_workers=args.max_concurrency) else: log.ODM_WARNING('Found a valid ODM 2.5D Mesh file in: %s' % tree.odm_25dmesh) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Meshing') log.ODM_INFO('Running ODM Meshing Cell - Finished') return ecto.OK if args.end_with != 'odm_meshing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM OpenSfM Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction photos = reconstruction.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start OpenSfM') return ecto.QUIT # create working directories system.mkdir_p(tree.opensfm) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'opensfm') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'opensfm' in args.rerun_from) if args.fast_orthophoto: output_file = io.join_paths(tree.opensfm, 'reconstruction.ply') elif args.use_opensfm_dense: output_file = tree.opensfm_model else: output_file = tree.opensfm_reconstruction # check if reconstruction was done before if not io.file_exists(output_file) or rerun_cell: # create file list list_path = io.join_paths(tree.opensfm, 'image_list.txt') has_alt = True with open(list_path, 'w') as fout: for photo in photos: if not photo.altitude: has_alt = False fout.write('%s\n' % io.join_paths(tree.dataset_raw, photo.filename)) # create config file for OpenSfM config = [ "use_exif_size: %s" % ('no' if not self.params.use_exif_size else 'yes'), "feature_process_size: %s" % self.params.feature_process_size, "feature_min_frames: %s" % self.params.feature_min_frames, "processes: %s" % self.params.processes, "matching_gps_neighbors: %s" % self.params.matching_gps_neighbors, "depthmap_method: %s" % args.opensfm_depthmap_method, "depthmap_resolution: %s" % args.depthmap_resolution, "depthmap_min_patch_sd: %s" % args.opensfm_depthmap_min_patch_sd, "depthmap_min_consistent_views: %s" % args.opensfm_depthmap_min_consistent_views, "optimize_camera_parameters: %s" % ('no' if self.params.fixed_camera_params else 'yes') ] if has_alt: log.ODM_DEBUG( "Altitude data detected, enabling it for GPS alignment") config.append("use_altitude_tag: yes") config.append("align_method: naive") else: config.append("align_method: orientation_prior") config.append("align_orientation_prior: vertical") if args.use_hybrid_bundle_adjustment: log.ODM_DEBUG("Enabling hybrid bundle adjustment") config.append( "bundle_interval: 100" ) # Bundle after adding 'bundle_interval' cameras config.append( "bundle_new_points_ratio: 1.2" ) # Bundle when (new points) / (bundled points) > bundle_new_points_ratio config.append( "local_bundle_radius: 1" ) # Max image graph distance for images to be included in local bundle adjustment if args.matcher_distance > 0: config.append("matching_gps_distance: %s" % self.params.matching_gps_distance) if tree.odm_georeferencing_gcp: config.append("bundle_use_gcp: yes") io.copy(tree.odm_georeferencing_gcp, tree.opensfm) # write config file log.ODM_DEBUG(config) config_filename = io.join_paths(tree.opensfm, 'config.yaml') with open(config_filename, 'w') as fout: fout.write("\n".join(config)) # run OpenSfM reconstruction matched_done_file = io.join_paths(tree.opensfm, 'matching_done.txt') if not io.file_exists(matched_done_file) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm extract_metadata %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm detect_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm match_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) with open(matched_done_file, 'w') as fout: fout.write("Matching done!\n") else: log.ODM_WARNING( 'Found a feature matching done progress file in: %s' % matched_done_file) if not io.file_exists(tree.opensfm_tracks) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm create_tracks %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM tracks file in: %s' % tree.opensfm_tracks) if not io.file_exists(tree.opensfm_reconstruction) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm reconstruct %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) # Check that a reconstruction file has been created if not io.file_exists(tree.opensfm_reconstruction): log.ODM_ERROR( "The program could not process this dataset using the current settings. " "Check that the images have enough overlap, " "that there are enough recognizable features " "and that the images are in focus. " "You could also try to increase the --min-num-features parameter." "The program will now exit.") sys.exit(1) # Always export VisualSFM's reconstruction and undistort images # as we'll use these for texturing (after GSD estimation and resizing) if not args.ignore_gsd: image_scale = gsd.image_scale_factor( args.orthophoto_resolution, tree.opensfm_reconstruction) else: image_scale = 1.0 if not io.file_exists( tree.opensfm_reconstruction_nvm) or rerun_cell: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_visualsfm --image_extension png --scale_focal %s %s' % (context.pyopencv_path, context.opensfm_path, image_scale, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM NVM reconstruction file in: %s' % tree.opensfm_reconstruction_nvm) # These will be used for texturing system.run( 'PYTHONPATH=%s %s/bin/opensfm undistort --image_format png --image_scale %s %s' % (context.pyopencv_path, context.opensfm_path, image_scale, tree.opensfm)) # Skip dense reconstruction if necessary and export # sparse reconstruction instead if args.fast_orthophoto: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_ply --no-cameras %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) elif args.use_opensfm_dense: # Undistort images at full scale in JPG # (TODO: we could compare the size of the PNGs if they are < than depthmap_resolution # and use those instead of re-exporting full resolution JPGs) system.run('PYTHONPATH=%s %s/bin/opensfm undistort %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run( 'PYTHONPATH=%s %s/bin/opensfm compute_depthmaps %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to bundler before if not io.file_exists(tree.opensfm_bundle_list) or rerun_cell: # convert back to bundler's format system.run( 'PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid Bundler file in: %s' % tree.opensfm_reconstruction) if reconstruction.georef: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_geocoords %s --transformation --proj \'%s\'' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, reconstruction.georef.projection.srs)) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'OpenSfM') log.ODM_INFO('Running ODM OpenSfM Cell - Finished') return ecto.OK if args.end_with != 'opensfm' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Resize Cell') # get inputs args = self.inputs.args tree = self.inputs.tree photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos to resize') return ecto.QUIT if self.params.resize_to <= 0: log.ODM_ERROR('Resize parameter must be greater than 0') return ecto.QUIT # create working directory system.mkdir_p(tree.dataset_resize) log.ODM_DEBUG('Resizing dataset to: %s' % tree.dataset_resize) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'resize') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'resize' in args.rerun_from) # loop over photos for photo in photos: # define image paths path_file = photo.path_file new_path_file = io.join_paths(tree.dataset_resize, photo.filename) # set raw image path in case we want to rerun cell if io.file_exists(new_path_file) and rerun_cell: path_file = io.join_paths(tree.dataset_raw, photo.filename) if not io.file_exists(new_path_file) or rerun_cell: # open and resize image with opencv img = cv2.imread(path_file) # compute new size max_side = max(img.shape[0], img.shape[1]) if max_side <= self.params.resize_to: log.ODM_WARNING('Resize Parameter is greater than the largest side of the image') ratio = float(self.params.resize_to) / float(max_side) img_r = cv2.resize(img, None, fx=ratio, fy=ratio) # write image with opencv cv2.imwrite(new_path_file, img_r) # read metadata with pyexiv2 old_meta = pyexiv2.ImageMetadata(path_file) new_meta = pyexiv2.ImageMetadata(new_path_file) old_meta.read() new_meta.read() # copy metadata old_meta.copy(new_meta) # update metadata size new_meta['Exif.Photo.PixelXDimension'] = img_r.shape[0] new_meta['Exif.Photo.PixelYDimension'] = img_r.shape[1] new_meta.write() # update photos array with new values photo.path_file = new_path_file photo.width = img_r.shape[0] photo.height = img_r.shape[1] photo.update_focal() # log message log.ODM_DEBUG('Resized %s | dimensions: %s' % (photo.filename, img_r.shape)) else: # log message log.ODM_WARNING('Already resized %s | dimensions: %s x %s' % (photo.filename, photo.width, photo.height)) log.ODM_INFO('Resized %s images' % len(photos)) # append photos to cell output self.outputs.photos = photos if args.time: system.benchmark(start_time, tree.benchmarking, 'Resizing') log.ODM_INFO('Running ODM Resize Cell - Finished') return ecto.OK if args.end_with != 'resize' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Orthophoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree reconstruction = inputs.reconstruction verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': 1.0 / (gsd.cap_resolution(self.params.resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0), 'verbose': verbose } # Have geo coordinates? georef = reconstruction.georef # Check if the georef object is initialized # (during a --rerun this might not be) # TODO: we should move this to a more central # location (perhaps during the dataset initialization) if georef and not georef.utm_east_offset: georeferencing_dir = tree.odm_georeferencing if args.use_3dmesh and not args.skip_3dmodel else tree.odm_25dgeoreferencing odm_georeferencing_model_txt_geo_file = os.path.join(georeferencing_dir, tree.odm_georeferencing_model_txt_geo) if io.file_exists(odm_georeferencing_model_txt_geo_file): georef.extract_offsets(odm_georeferencing_model_txt_geo_file) else: log.ODM_WARNING('Cannot read UTM offset from {}. An orthophoto will not be generated.'.format(odm_georeferencing_model_txt_geo_file)) if georef: if args.use_3dmesh: kwargs['model_geo'] = os.path.join(tree.odm_texturing, tree.odm_georeferencing_model_obj_geo) else: kwargs['model_geo'] = os.path.join(tree.odm_25dtexturing, tree.odm_georeferencing_model_obj_geo) else: if args.use_3dmesh: kwargs['model_geo'] = os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) else: kwargs['model_geo'] = os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) # run odm_orthophoto system.run('{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if georef and georef.projection and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'tiled': '' if self.params.no_tiled else '-co TILED=yes ', 'compress': self.params.compress, 'predictor': '-co PREDICTOR=2 ' if self.params.compress in ['LZW', 'DEFLATE'] else '', 'proj': georef.projection.srs, 'bigtiff': self.params.bigtiff, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log, 'max_memory': get_max_memory(), 'threads': self.params.max_concurrency } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{tiled} ' '-co BIGTIFF={bigtiff} ' '-co COMPRESS={compress} ' '{predictor} ' '-co BLOCKXSIZE=512 ' '-co BLOCKYSIZE=512 ' '-co NUM_THREADS={threads} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '{png} {tiff} > {log}'.format(**kwargs)) if args.crop > 0: shapefile_path = os.path.join(tree.odm_georeferencing, 'odm_georeferenced_model.bounds.shp') Cropper.crop(shapefile_path, tree.odm_orthophoto_tif, { 'TILED': 'NO' if self.params.no_tiled else 'YES', 'COMPRESS': self.params.compress, 'PREDICTOR': '2' if self.params.compress in ['LZW', 'DEFLATE'] else '1', 'BIGTIFF': self.params.bigtiff, 'BLOCKXSIZE': 512, 'BLOCKYSIZE': 512, 'NUM_THREADS': self.params.max_concurrency }) if self.params.build_overviews: log.ODM_DEBUG("Building Overviews") kwargs = { 'orthophoto': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_gdaladdo_log } # Run gdaladdo system.run('gdaladdo -ro -r average ' '--config BIGTIFF_OVERVIEW IF_SAFER ' '--config COMPRESS_OVERVIEW JPEG ' '{orthophoto} 2 4 8 16 > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING('No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running OMD OrthoPhoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'model_geo': tree.odm_georeferencing_model_obj_geo, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': self.params.resolution } # run odm_orthophoto system.run('{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} ' '-outputCornerFile {corners}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False georef = types.ODM_GeoRef() # creates the coord refs # TODO I don't want to have to do this twice- after odm_georef georef.parse_coordinate_system(tree.odm_georeferencing_coords) if georef.epsg and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'epsg': georef.epsg, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '-a_srs \"EPSG:{epsg}\" {png} {tiff} > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING('No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVS Texturing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # define paths and create working directories system.mkdir_p(tree.odm_texturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mvs_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mvs_texturing' in args.rerun_from) if not io.file_exists(tree.odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing MVS Textured file in: %s' % tree.odm_textured_model_obj) # Format arguments to fit Mvs-Texturing app skipGeometricVisibilityTest = "" skipGlobalSeamLeveling = "" skipLocalSeamLeveling = "" skipHoleFilling = "" keepUnseenFaces = "" if (self.params.skip_vis_test): skipGeometricVisibilityTest = "--skip_geometric_visibility_test" if (self.params.skip_glob_seam_leveling): skipGlobalSeamLeveling = "--skip_global_seam_leveling" if (self.params.skip_loc_seam_leveling): skipLocalSeamLeveling = "--skip_local_seam_leveling" if (self.params.skip_hole_fill): skipHoleFilling = "--skip_hole_filling" if (self.params.keep_unseen_faces): keepUnseenFaces = "--keep_unseen_faces" # mvstex definitions kwargs = { 'bin': context.mvstex_path, 'out_dir': io.join_paths(tree.odm_texturing, "odm_textured_model"), 'pmvs_folder': tree.pmvs_rec_path, 'nvm_file': io.join_paths(tree.pmvs_rec_path, "nvmCams.nvm"), 'model': tree.odm_mesh, 'dataTerm': self.params.data_term, 'outlierRemovalType': self.params.outlier_rem_type, 'skipGeometricVisibilityTest': skipGeometricVisibilityTest, 'skipGlobalSeamLeveling': skipGlobalSeamLeveling, 'skipLocalSeamLeveling': skipLocalSeamLeveling, 'skipHoleFilling': skipHoleFilling, 'keepUnseenFaces': keepUnseenFaces } if args.use_opensfm_pointcloud: kwargs['nvm_file'] = io.join_paths(tree.opensfm, "reconstruction.nvm") else: log.ODM_DEBUG('Generating .nvm file from pmvs output: %s' % '{nvm_file}'.format(**kwargs)) # Create .nvm camera file. pmvs2nvmcams.run('{pmvs_folder}'.format(**kwargs), '{nvm_file}'.format(**kwargs)) # run texturing binary system.run('{bin} {nvm_file} {model} {out_dir} ' '-d {dataTerm} -o {outlierRemovalType} ' '{skipGeometricVisibilityTest} ' '{skipGlobalSeamLeveling} ' '{skipLocalSeamLeveling} ' '{skipHoleFilling} ' '{keepUnseenFaces}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % tree.odm_textured_model_obj) if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'odm_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Meshing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction # define paths and create working directories system.mkdir_p(tree.odm_meshing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_meshing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_meshing' in args.rerun_from) infile = tree.smvs_model if args.fast_orthophoto: infile = os.path.join(tree.opensfm, 'reconstruction.ply') elif args.use_opensfm_dense: infile = tree.opensfm_model # Create full 3D model unless --skip-3dmodel is set if not args.skip_3dmodel: if not io.file_exists(tree.odm_mesh) or rerun_cell: log.ODM_DEBUG('Writing ODM Mesh file in: %s' % tree.odm_mesh) mesh.screened_poisson_reconstruction( infile, tree.odm_mesh, depth=self.params.oct_tree, samples=self.params.samples, maxVertexCount=self.params.max_vertex, pointWeight=self.params.point_weight, threads=self.params.max_concurrency, verbose=self.params.verbose) else: log.ODM_WARNING('Found a valid ODM Mesh file in: %s' % tree.odm_mesh) # Always generate a 2.5D mesh # unless --use-3dmesh is set. if not args.use_3dmesh: if not io.file_exists(tree.odm_25dmesh) or rerun_cell: log.ODM_DEBUG('Writing ODM 2.5D Mesh file in: %s' % tree.odm_25dmesh) ortho_resolution = gsd.cap_resolution( args.orthophoto_resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0 dsm_multiplier = max( 1.0, gsd.rounded_gsd(tree.opensfm_reconstruction, default_value=4, ndigits=3, ignore_gsd=args.ignore_gsd)) # A good DSM size depends on the flight altitude. # Flights at low altitude need more details (higher resolution) # Flights at higher altitude benefit from smoother surfaces (lower resolution) dsm_resolution = ortho_resolution * dsm_multiplier dsm_radius = dsm_resolution * math.sqrt(2) # Sparse point clouds benefits from using # a larger radius interolation --> less holes if args.fast_orthophoto: dsm_radius *= 2 log.ODM_DEBUG('ODM 2.5D DSM resolution: %s' % dsm_resolution) mesh.create_25dmesh( infile, tree.odm_25dmesh, dsm_radius=dsm_radius, dsm_resolution=dsm_resolution, depth=self.params.oct_tree, maxVertexCount=self.params.max_vertex, samples=self.params.samples, verbose=self.params.verbose, max_workers=args.max_concurrency, method='poisson' if args.fast_orthophoto else 'gridded') else: log.ODM_WARNING('Found a valid ODM 2.5D Mesh file in: %s' % tree.odm_25dmesh) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Meshing') log.ODM_INFO('Running ODM Meshing Cell - Finished') return ecto.OK if args.end_with != 'odm_meshing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Orthophoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': self.params.resolution, 'verbose': verbose } kwargs['model_geo'] = tree.odm_georeferencing_model_obj_geo \ if io.file_exists(tree.odm_georeferencing_coords) \ else tree.odm_textured_model_obj # run odm_orthophoto system.run('{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) if not io.file_exists(tree.odm_georeferencing_coords): log.ODM_WARNING('No coordinates file. A georeferenced raster ' 'will not be created') else: # Create georeferenced GeoTiff geotiffcreated = False georef = types.ODM_GeoRef() # creates the coord refs # TODO I don't want to have to do this twice- after odm_georef georef.parse_coordinate_system(tree.odm_georeferencing_coords) if georef.epsg and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'tiled': '' if self.params.no_tiled else '-co TILED=yes ', 'compress': self.params.compress, 'predictor': '-co PREDICTOR=2 ' if self.params.compress in ['LZW', 'DEFLATE'] else '', 'epsg': georef.epsg, 't_srs': self.params.t_srs or "EPSG:{0}".format(georef.epsg), 'bigtiff': self.params.bigtiff, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{tiled} ' '-co BIGTIFF={bigtiff} ' '-co COMPRESS={compress} ' '{predictor} ' '-co BLOCKXSIZE=512 ' '-co BLOCKYSIZE=512 ' '-co NUM_THREADS=ALL_CPUS ' '-a_srs \"EPSG:{epsg}\" ' '{png} {tiff} > {log}'.format(**kwargs)) if self.params.build_overviews: log.ODM_DEBUG("Building Overviews") kwargs = { 'orthophoto': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_gdaladdo_log } # Run gdaladdo system.run('gdaladdo -ro -r average ' '--config BIGTIFF_OVERVIEW IF_SAFER ' '--config COMPRESS_OVERVIEW JPEG ' '{orthophoto} 2 4 8 16 > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING('No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM DEM Cell') # get inputs args = self.inputs.args tree = self.inputs.tree las_model_found = io.file_exists(tree.odm_georeferencing_model_las) env_paths = [context.superbuild_bin_path] # Just to make sure l2d_module_installed = True try: system.run('l2d_classify --help > /dev/null', env_paths) except: log.ODM_WARNING('lidar2dems is not installed properly') l2d_module_installed = False log.ODM_INFO('Create DSM: ' + str(args.dsm)) log.ODM_INFO('Create DTM: ' + str(args.dtm)) log.ODM_INFO('DEM input file {0} found: {1}'.format(tree.odm_georeferencing_model_las, str(las_model_found))) # Do we need to process anything here? if (args.dsm or args.dtm) and las_model_found and l2d_module_installed: # define paths and create working directories odm_dem_root = tree.path('odm_dem') system.mkdir_p(odm_dem_root) dsm_output_filename = os.path.join(odm_dem_root, 'dsm.tif') dtm_output_filename = os.path.join(odm_dem_root, 'dtm.tif') # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_dem') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_dem' in args.rerun_from) if (args.dtm and not io.file_exists(dtm_output_filename)) or \ (args.dsm and not io.file_exists(dsm_output_filename)) or \ rerun_cell: # Extract boundaries and srs of point cloud summary_file_path = os.path.join(odm_dem_root, 'odm_georeferenced_model.summary.json') boundary_file_path = os.path.join(odm_dem_root, 'odm_georeferenced_model.boundary.json') system.run('pdal info --summary {0} > {1}'.format(tree.odm_georeferencing_model_las, summary_file_path), env_paths) system.run('pdal info --boundary {0} > {1}'.format(tree.odm_georeferencing_model_las, boundary_file_path), env_paths) pc_proj4 = "" pc_geojson_bounds_feature = None with open(summary_file_path, 'r') as f: json_f = json.loads(f.read()) pc_proj4 = json_f['summary']['srs']['proj4'] with open(boundary_file_path, 'r') as f: json_f = json.loads(f.read()) pc_geojson_boundary_feature = json_f['boundary']['boundary_json'] # Write bounds to GeoJSON bounds_geojson_path = os.path.join(odm_dem_root, 'odm_georeferenced_model.bounds.geojson') with open(bounds_geojson_path, "w") as f: f.write(json.dumps({ "type": "FeatureCollection", "features": [{ "type": "Feature", "geometry": pc_geojson_boundary_feature }] })) bounds_shapefile_path = os.path.join(odm_dem_root, 'bounds.shp') # Convert bounds to Shapefile kwargs = { 'input': bounds_geojson_path, 'output': bounds_shapefile_path, 'proj4': pc_proj4 } system.run('ogr2ogr -overwrite -a_srs "{proj4}" {output} {input}'.format(**kwargs)) # Process with lidar2dems terrain_params_map = { 'flatnonforest': (1, 3), 'flatforest': (1, 2), 'complexnonforest': (5, 2), 'complexforest': (10, 2) } terrain_params = terrain_params_map[args.dem_terrain_type.lower()] kwargs = { 'verbose': '-v' if self.params.verbose else '', 'slope': terrain_params[0], 'cellsize': terrain_params[1], 'outdir': odm_dem_root, 'site': bounds_shapefile_path } l2d_params = '--slope {slope} --cellsize {cellsize} ' \ '{verbose} ' \ '-o -s {site} ' \ '--outdir {outdir}'.format(**kwargs) approximate = '--approximate' if args.dem_approximate else '' # Classify only if we need a DTM run_classification = args.dtm if run_classification: system.run('l2d_classify {0} --decimation {1} ' '{2} --initialDistance {3} {4}'.format( l2d_params, args.dem_decimation, approximate, args.dem_initial_distance, tree.odm_georeferencing), env_paths) else: log.ODM_INFO("Will skip classification, only DSM is needed") copyfile(tree.odm_georeferencing_model_las, os.path.join(odm_dem_root, 'bounds-0_l2d_s{slope}c{cellsize}.las'.format(**kwargs))) products = [] if args.dsm: products.append('dsm') if args.dtm: products.append('dtm') radius_steps = [args.dem_resolution] for _ in range(args.dem_gapfill_steps - 1): radius_steps.append(radius_steps[-1] * 3) # 3 is arbitrary, maybe there's a better value? for product in products: demargs = { 'product': product, 'indir': odm_dem_root, 'l2d_params': l2d_params, 'maxsd': args.dem_maxsd, 'maxangle': args.dem_maxangle, 'resolution': args.dem_resolution, 'radius_steps': ' '.join(map(str, radius_steps)), 'gapfill': '--gapfill' if args.dem_gapfill_steps > 0 else '', # If we didn't run a classification, we should pass the decimate parameter here 'decimation': '--decimation {0}'.format(args.dem_decimation) if not run_classification else '' } system.run('l2d_dems {product} {indir} {l2d_params} ' '--maxsd {maxsd} --maxangle {maxangle} ' '--resolution {resolution} --radius {radius_steps} ' '{decimation} ' '{gapfill} '.format(**demargs), env_paths) # Rename final output if product == 'dsm': os.rename(os.path.join(odm_dem_root, 'bounds-0_dsm.idw.tif'), dsm_output_filename) elif product == 'dtm': os.rename(os.path.join(odm_dem_root, 'bounds-0_dtm.idw.tif'), dtm_output_filename) else: log.ODM_WARNING('Found existing outputs in: %s' % odm_dem_root) else: log.ODM_WARNING('DEM will not be generated') if args.time: system.benchmark(start_time, tree.benchmarking, 'Dem') log.ODM_INFO('Running ODM DEM Cell - Finished') return ecto.OK if args.end_with != 'odm_dem' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction gcpfile = tree.odm_georeferencing_gcp doPointCloudGeo = True transformPointCloud = True verbose = '-verbose' if self.params.verbose else '' geo_ref = reconstruction.georef # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_georeferencing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_georeferencing' in args.rerun_from) runs = [{ 'georeferencing_dir': tree.odm_georeferencing, 'texturing_dir': tree.odm_texturing, 'model': os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) }] if args.skip_3dmodel: runs = [] if not args.use_3dmesh: # Make sure 2.5D mesh is georeferenced before the 3D mesh # Because it will be used to calculate a transform # for the point cloud. If we use the 3D model transform, # DEMs and orthophoto might not align! runs.insert( 0, { 'georeferencing_dir': tree.odm_25dgeoreferencing, 'texturing_dir': tree.odm_25dtexturing, 'model': os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) }) for r in runs: odm_georeferencing_model_obj_geo = os.path.join( r['texturing_dir'], tree.odm_georeferencing_model_obj_geo) odm_georeferencing_log = os.path.join(r['georeferencing_dir'], tree.odm_georeferencing_log) odm_georeferencing_transform_file = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_transform_file) odm_georeferencing_model_txt_geo_file = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_model_txt_geo) if not io.file_exists(odm_georeferencing_model_obj_geo) or \ not io.file_exists(tree.odm_georeferencing_model_laz) or rerun_cell: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'input_pc_file': tree.filtered_point_cloud, 'bundle': tree.opensfm_bundle, 'imgs': tree.dataset_raw, 'imgs_list': tree.opensfm_bundle_list, 'model': r['model'], 'log': odm_georeferencing_log, 'input_trans_file': tree.opensfm_transformation, 'transform_file': odm_georeferencing_transform_file, 'coords': tree.odm_georeferencing_coords, 'output_pc_file': tree.odm_georeferencing_model_laz, 'geo_sys': odm_georeferencing_model_txt_geo_file, 'model_geo': odm_georeferencing_model_obj_geo, 'gcp': gcpfile, 'verbose': verbose } if transformPointCloud: kwargs[ 'pc_params'] = '-inputPointCloudFile {input_pc_file} -outputPointCloudFile {output_pc_file}'.format( **kwargs) if geo_ref and geo_ref.projection and geo_ref.projection.srs: kwargs[ 'pc_params'] += ' -outputPointCloudSrs %s' % pipes.quote( geo_ref.projection.srs) else: log.ODM_WARNING( 'NO SRS: The output point cloud will not have a SRS.' ) else: kwargs['pc_params'] = '' # Check to see if the GCP file exists if not self.params.use_exif and (self.params.gcp_file or tree.odm_georeferencing_gcp): log.ODM_INFO('Found %s' % gcpfile) try: system.run( '{bin}/odm_georef -bundleFile {bundle} -imagesPath {imgs} -imagesListPath {imgs_list} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys} -gcpFile {gcp} ' '-outputCoordFile {coords}'.format(**kwargs)) except Exception: log.ODM_EXCEPTION('Georeferencing failed. ') return ecto.QUIT elif io.file_exists( tree.opensfm_transformation) and io.file_exists( tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with OpenSfM transformation matrix' ) system.run( '{bin}/odm_georef -bundleFile {bundle} -inputTransformFile {input_trans_file} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}' .format(**kwargs)) elif io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with generated coords file.') system.run( '{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}' .format(**kwargs)) else: log.ODM_WARNING( 'Georeferencing failed. Make sure your ' 'photos have geotags in the EXIF or you have ' 'provided a GCP file. ') doPointCloudGeo = False # skip the rest of the georeferencing if doPointCloudGeo: # update images metadata geo_ref.extract_offsets( odm_georeferencing_model_txt_geo_file) reconstruction.georef = geo_ref # XYZ point cloud output if args.pc_csv: log.ODM_INFO( "Creating geo-referenced CSV file (XYZ format)") system.run( "pdal translate -i \"{}\" " "-o \"{}\" " "--writers.text.format=csv " "--writers.text.order=\"X,Y,Z\" " "--writers.text.keep_unspecified=false ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_xyz_file)) # LAS point cloud output if args.pc_las: log.ODM_INFO("Creating geo-referenced LAS file") system.run("pdal translate -i \"{}\" " "-o \"{}\" ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_model_las)) if args.crop > 0: log.ODM_INFO( "Calculating cropping area and generating bounds shapefile from point cloud" ) cropper = Cropper(tree.odm_georeferencing, 'odm_georeferenced_model') decimation_step = 40 if args.fast_orthophoto or args.use_opensfm_dense else 90 # More aggressive decimation for large datasets if not args.fast_orthophoto: decimation_step *= int( len(reconstruction.photos) / 1000) + 1 cropper.create_bounds_shapefile( tree.odm_georeferencing_model_laz, args.crop, decimation_step=decimation_step, outlier_radius=20 if args.fast_orthophoto else 2) # Do not execute a second time, since # We might be doing georeferencing for # multiple models (3D, 2.5D, ...) doPointCloudGeo = False transformPointCloud = False else: log.ODM_WARNING('Found a valid georeferenced model in: %s' % tree.odm_georeferencing_model_laz) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Georeferencing') log.ODM_INFO('Running ODM Georeferencing Cell - Finished') return ecto.OK if args.end_with != 'odm_georeferencing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM OpenSfM Cell') # get inputs tree = self.inputs.tree args = self.inputs.args photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start OpenSfM') return ecto.QUIT # create working directories system.mkdir_p(tree.opensfm) system.mkdir_p(tree.pmvs) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'opensfm') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'opensfm' in args.rerun_from) if not args.use_pmvs: output_file = tree.opensfm_model else: output_file = tree.opensfm_reconstruction # check if reconstruction was done before if not io.file_exists(output_file) or rerun_cell: # create file list list_path = io.join_paths(tree.opensfm, 'image_list.txt') with open(list_path, 'w') as fout: for photo in photos: fout.write('%s\n' % photo.path_file) # create config file for OpenSfM config = [ "use_exif_size: %s" % ('no' if not self.params.use_exif_size else 'yes'), "feature_process_size: %s" % self.params.feature_process_size, "feature_min_frames: %s" % self.params.feature_min_frames, "processes: %s" % self.params.processes, "matching_gps_neighbors: %s" % self.params.matching_gps_neighbors ] if args.matcher_distance > 0: config.append("matching_gps_distance: %s" % self.params.matching_gps_distance) # write config file config_filename = io.join_paths(tree.opensfm, 'config.yaml') with open(config_filename, 'w') as fout: fout.write("\n".join(config)) # run OpenSfM reconstruction system.run( 'PYTHONPATH=%s %s/bin/run_all %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) if not args.use_pmvs: system.run('PYTHONPATH=%s %s/bin/opensfm export_visualsfm %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm undistort %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run( 'PYTHONPATH=%s %s/bin/opensfm compute_depthmaps %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to bundler before if not io.file_exists(tree.opensfm_bundle_list) or rerun_cell: # convert back to bundler's format system.run( 'PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid Bundler file in: %s' % tree.opensfm_reconstruction) if args.use_pmvs: # check if reconstruction was exported to pmvs before if not io.file_exists(tree.pmvs_visdat) or rerun_cell: # run PMVS converter system.run('PYTHONPATH=%s %s/bin/export_pmvs %s --output %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, tree.pmvs)) else: log.ODM_WARNING('Found a valid CMVS file in: %s' % tree.pmvs_visdat) if args.time: system.benchmark(start_time, tree.benchmarking, 'OpenSfM') log.ODM_INFO('Running ODM OpenSfM Cell - Finished') return ecto.OK if args.end_with != 'opensfm' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Texturing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_texturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_texturing' in args.rerun_from) # Undistort radial distortion if not os.path.isdir(tree.odm_texturing_undistorted_image_path) or rerun_cell: system.run(' '.join([ 'cd {} &&'.format(tree.opensfm), 'PYTHONPATH={}:{}'.format(context.pyopencv_path, context.opensfm_path), 'python', os.path.join(context.odm_modules_src_path, 'odm_slam/src/undistort_radial.py'), '--output', tree.odm_texturing_undistorted_image_path, tree.opensfm, ])) system.run( 'PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid Bundler file in: %s' % (tree.opensfm_reconstruction)) if not io.file_exists(tree.odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing ODM Textured file in: %s' % tree.odm_textured_model_obj) # odm_texturing definitions kwargs = { 'bin': context.odm_modules_path, 'out_dir': tree.odm_texturing, 'bundle': tree.opensfm_bundle, 'imgs_path': tree.odm_texturing_undistorted_image_path, 'imgs_list': tree.opensfm_bundle_list, 'model': tree.odm_mesh, 'log': tree.odm_texuring_log, 'resize': self.params.resize, 'resolution': self.params.resolution, 'size': self.params.size, 'verbose': verbose } # run texturing binary system.run('{bin}/odm_texturing -bundleFile {bundle} ' '-imagesPath {imgs_path} -imagesListPath {imgs_list} ' '-inputModelPath {model} -outputFolder {out_dir}/ ' '-textureResolution {resolution} -bundleResizedTo {resize} {verbose} ' '-textureWithSize {size} -logFile {log}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % tree.odm_textured_model_obj) if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'odm_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM OpenSfM Cell') # get inputs tree = self.inputs.tree args = self.inputs.args photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start OpenSfM') return ecto.QUIT # create working directories system.mkdir_p(tree.opensfm) system.mkdir_p(tree.pmvs) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'opensfm') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'opensfm' in args.rerun_from) if not args.use_pmvs: output_file = tree.opensfm_model else: output_file = tree.opensfm_reconstruction # check if reconstruction was done before if not io.file_exists(output_file) or rerun_cell: # create file list list_path = io.join_paths(tree.opensfm, 'image_list.txt') has_alt = True with open(list_path, 'w') as fout: for photo in photos: if not photo.altitude: has_alt = False fout.write('%s\n' % photo.path_file) # create config file for OpenSfM config = [ "use_exif_size: %s" % ('no' if not self.params.use_exif_size else 'yes'), "feature_process_size: %s" % self.params.feature_process_size, "feature_min_frames: %s" % self.params.feature_min_frames, "processes: %s" % self.params.processes, "matching_gps_neighbors: %s" % self.params.matching_gps_neighbors, "optimize_camera_parameters: %s" % ('no' if self.params.fixed_camera_params else 'yes') ] if has_alt: log.ODM_DEBUG( "Altitude data detected, enabling it for GPS alignment") config.append("use_altitude_tag: True") config.append("align_method: naive") if args.matcher_distance > 0: config.append("matching_gps_distance: %s" % self.params.matching_gps_distance) # write config file config_filename = io.join_paths(tree.opensfm, 'config.yaml') with open(config_filename, 'w') as fout: fout.write("\n".join(config)) # run OpenSfM reconstruction matched_done_file = io.join_paths(tree.opensfm, 'matching_done.txt') if not io.file_exists(matched_done_file) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm extract_metadata %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm detect_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm match_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) with open(matched_done_file, 'w') as fout: fout.write("Matching done!\n") else: log.ODM_WARNING( 'Found a feature matching done progress file in: %s' % matched_done_file) if not io.file_exists(tree.opensfm_tracks) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm create_tracks %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM tracks file in: %s' % tree.opensfm_tracks) if not io.file_exists(tree.opensfm_reconstruction) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm reconstruct %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) if not io.file_exists( tree.opensfm_reconstruction_meshed) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm mesh %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM meshed reconstruction file in: %s' % tree.opensfm_reconstruction_meshed) if not args.use_pmvs: if not io.file_exists( tree.opensfm_reconstruction_nvm) or rerun_cell: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_visualsfm %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM NVM reconstruction file in: %s' % tree.opensfm_reconstruction_nvm) system.run('PYTHONPATH=%s %s/bin/opensfm undistort %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run( 'PYTHONPATH=%s %s/bin/opensfm compute_depthmaps %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to bundler before if not io.file_exists(tree.opensfm_bundle_list) or rerun_cell: # convert back to bundler's format system.run( 'PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid Bundler file in: %s' % tree.opensfm_reconstruction) if args.use_pmvs: # check if reconstruction was exported to pmvs before if not io.file_exists(tree.pmvs_visdat) or rerun_cell: # run PMVS converter system.run('PYTHONPATH=%s %s/bin/export_pmvs %s --output %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, tree.pmvs)) else: log.ODM_WARNING('Found a valid CMVS file in: %s' % tree.pmvs_visdat) if args.time: system.benchmark(start_time, tree.benchmarking, 'OpenSfM') log.ODM_INFO('Running ODM OpenSfM Cell - Finished') return ecto.OK if args.end_with != 'opensfm' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Orthophoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree reconstruction = inputs.reconstruction verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': 1.0 / (gsd.cap_resolution(self.params.resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0), 'verbose': verbose } # Have geo coordinates? georef = reconstruction.georef # Check if the georef object is initialized # (during a --rerun this might not be) # TODO: we should move this to a more central # location (perhaps during the dataset initialization) if georef and not georef.utm_east_offset: georeferencing_dir = tree.odm_georeferencing if args.use_3dmesh and not args.skip_3dmodel else tree.odm_25dgeoreferencing odm_georeferencing_model_txt_geo_file = os.path.join( georeferencing_dir, tree.odm_georeferencing_model_txt_geo) if io.file_exists(odm_georeferencing_model_txt_geo_file): georef.extract_offsets( odm_georeferencing_model_txt_geo_file) else: log.ODM_WARNING( 'Cannot read UTM offset from {}. An orthophoto will not be generated.' .format(odm_georeferencing_model_txt_geo_file)) if georef: if args.use_3dmesh: kwargs['model_geo'] = os.path.join( tree.odm_texturing, tree.odm_georeferencing_model_obj_geo) else: kwargs['model_geo'] = os.path.join( tree.odm_25dtexturing, tree.odm_georeferencing_model_obj_geo) else: if args.use_3dmesh: kwargs['model_geo'] = os.path.join( tree.odm_texturing, tree.odm_textured_model_obj) else: kwargs['model_geo'] = os.path.join( tree.odm_25dtexturing, tree.odm_textured_model_obj) # run odm_orthophoto system.run( '{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if georef and georef.projection and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'tiled': '' if self.params.no_tiled else '-co TILED=yes ', 'compress': self.params.compress, 'predictor': '-co PREDICTOR=2 ' if self.params.compress in ['LZW', 'DEFLATE'] else '', 'proj': georef.projection.srs, 'bigtiff': self.params.bigtiff, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log, 'max_memory': get_max_memory(), 'threads': self.params.max_concurrency } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{tiled} ' '-co BIGTIFF={bigtiff} ' '-co COMPRESS={compress} ' '{predictor} ' '-co BLOCKXSIZE=512 ' '-co BLOCKYSIZE=512 ' '-co NUM_THREADS={threads} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '{png} {tiff} > {log}'.format(**kwargs)) if args.crop > 0: shapefile_path = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.shp') Cropper.crop( shapefile_path, tree.odm_orthophoto_tif, { 'TILED': 'NO' if self.params.no_tiled else 'YES', 'COMPRESS': self.params.compress, 'PREDICTOR': '2' if self.params.compress in ['LZW', 'DEFLATE'] else '1', 'BIGTIFF': self.params.bigtiff, 'BLOCKXSIZE': 512, 'BLOCKYSIZE': 512, 'NUM_THREADS': self.params.max_concurrency }) if self.params.build_overviews: log.ODM_DEBUG("Building Overviews") kwargs = { 'orthophoto': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_gdaladdo_log } # Run gdaladdo system.run( 'gdaladdo -ro -r average ' '--config BIGTIFF_OVERVIEW IF_SAFER ' '--config COMPRESS_OVERVIEW JPEG ' '{orthophoto} 2 4 8 16 > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING( 'No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def process(self, inputs, outputs): # find a file in the root directory def find(file, dir): for root, dirs, files in os.walk(dir): return '/'.join((root, file)) if file in files else None # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree gcpfile = io.join_paths(tree.root_path, self.params.gcp_file) \ if self.params.gcp_file else find('gcp_list.txt', tree.root_path) geocreated = True verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) # in case a gcp file it's not provided, let's try to generate it using # images metadata. Internally calls jhead. log.ODM_DEBUG(self.params.gcp_file) if not self.params.gcp_file: # and \ # not io.file_exists(tree.odm_georeferencing_coords): log.ODM_WARNING('No coordinates file. ' 'Generating coordinates file: %s' % tree.odm_georeferencing_coords) # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'imgs': tree.dataset_resize, 'imgs_list': tree.opensfm_bundle_list, 'coords': tree.odm_georeferencing_coords, 'log': tree.odm_georeferencing_utm_log, 'verbose': verbose } # run UTM extraction binary extract_utm = system.run_and_return( '{bin}/odm_extract_utm -imagesPath {imgs}/ ' '-imageListFile {imgs_list} -outputCoordFile {coords} {verbose} ' '-logFile {log}'.format(**kwargs)) if extract_utm != '': log.ODM_WARNING('Could not generate coordinates file. ' 'Ignore if there is a GCP file. Error: %s' % extract_utm) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_georeferencing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_georeferencing' in args.rerun_from) if not io.file_exists(tree.odm_georeferencing_model_obj_geo) or \ not io.file_exists(tree.odm_georeferencing_model_ply_geo) or rerun_cell: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'bundle': tree.opensfm_bundle, 'imgs': tree.dataset_resize, 'imgs_list': tree.opensfm_bundle_list, 'model': tree.odm_textured_model_obj, 'log': tree.odm_georeferencing_log, 'coords': tree.odm_georeferencing_coords, 'pc_geo': tree.odm_georeferencing_model_ply_geo, 'geo_sys': tree.odm_georeferencing_model_txt_geo, 'model_geo': tree.odm_georeferencing_model_obj_geo, 'size': self.params.img_size, 'gcp': gcpfile, 'verbose': verbose } if not args.use_pmvs: kwargs['pc'] = tree.opensfm_model else: kwargs['pc'] = tree.pmvs_model # Check to see if the GCP file exists if not self.params.use_exif and (self.params.gcp_file or find( 'gcp_list.txt', tree.root_path)): log.ODM_INFO('Found %s' % gcpfile) try: system.run( '{bin}/odm_georef -bundleFile {bundle} -imagesPath {imgs} -imagesListPath {imgs_list} ' '-bundleResizedTo {size} -inputFile {model} -outputFile {model_geo} ' '-inputPointCloudFile {pc} -outputPointCloudFile {pc_geo} {verbose} ' '-logFile {log} -georefFileOutputPath {geo_sys} -gcpFile {gcp} ' '-outputCoordFile {coords}'.format(**kwargs)) except Exception: log.ODM_EXCEPTION('Georeferencing failed. ') return ecto.QUIT elif io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with generated coords file.') system.run( '{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '-inputPointCloudFile {pc} -outputPointCloudFile {pc_geo} {verbose} ' '-logFile {log} -georefFileOutputPath {geo_sys}'.format( **kwargs)) else: log.ODM_WARNING('Georeferencing failed. Make sure your ' 'photos have geotags in the EXIF or you have ' 'provided a GCP file. ') geocreated = False # skip the rest of the georeferencing if geocreated: # update images metadata geo_ref = types.ODM_GeoRef() geo_ref.parse_coordinate_system(tree.odm_georeferencing_coords) for idx, photo in enumerate(self.inputs.photos): geo_ref.utm_to_latlon(tree.odm_georeferencing_latlon, photo, idx) # convert ply model to LAS reference system geo_ref.convert_to_las(tree.odm_georeferencing_model_ply_geo, tree.odm_georeferencing_pdal) # XYZ point cloud output log.ODM_INFO( "Creating geo-referenced CSV file (XYZ format, can be used with GRASS to create DEM)" ) with open(tree.odm_georeferencing_xyz_file, "wb") as csvfile: csvfile_writer = csv.writer(csvfile, delimiter=",") reachedpoints = False with open(tree.odm_georeferencing_model_ply_geo) as f: for lineNumber, line in enumerate(f): if reachedpoints: tokens = line.split(" ") csv_line = [ float(tokens[0]) + geo_ref.utm_east_offset, float(tokens[1]) + geo_ref.utm_north_offset, tokens[2] ] csvfile_writer.writerow(csv_line) if line.startswith("end_header"): reachedpoints = True csvfile.close() else: log.ODM_WARNING('Found a valid georeferenced model in: %s' % tree.odm_georeferencing_model_ply_geo) if args.time: system.benchmark(start_time, tree.benchmarking, 'Georeferencing') log.ODM_INFO('Running ODM Georeferencing Cell - Finished') return ecto.OK if args.end_with != 'odm_georeferencing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVS Texturing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction # define paths and create working directories system.mkdir_p(tree.odm_texturing) if not args.use_3dmesh: system.mkdir_p(tree.odm_25dtexturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mvs_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mvs_texturing' in args.rerun_from) runs = [{ 'out_dir': tree.odm_texturing, 'model': tree.odm_mesh, 'nadir': False }] if args.skip_3dmodel: runs = [] if not args.use_3dmesh: runs += [{ 'out_dir': tree.odm_25dtexturing, 'model': tree.odm_25dmesh, 'nadir': True }] for r in runs: odm_textured_model_obj = os.path.join(r['out_dir'], tree.odm_textured_model_obj) if not io.file_exists(odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing MVS Textured file in: %s' % odm_textured_model_obj) # Format arguments to fit Mvs-Texturing app skipGeometricVisibilityTest = "" skipGlobalSeamLeveling = "" skipLocalSeamLeveling = "" skipHoleFilling = "" keepUnseenFaces = "" nadir = "" if (self.params.skip_vis_test): skipGeometricVisibilityTest = "--skip_geometric_visibility_test" if (self.params.skip_glob_seam_leveling): skipGlobalSeamLeveling = "--skip_global_seam_leveling" if (self.params.skip_loc_seam_leveling): skipLocalSeamLeveling = "--skip_local_seam_leveling" if (self.params.skip_hole_fill): skipHoleFilling = "--skip_hole_filling" if (self.params.keep_unseen_faces): keepUnseenFaces = "--keep_unseen_faces" if (r['nadir']): nadir = '--nadir_mode' # mvstex definitions kwargs = { 'bin': context.mvstex_path, 'out_dir': io.join_paths(r['out_dir'], "odm_textured_model"), 'model': r['model'], 'dataTerm': self.params.data_term, 'outlierRemovalType': self.params.outlier_rem_type, 'skipGeometricVisibilityTest': skipGeometricVisibilityTest, 'skipGlobalSeamLeveling': skipGlobalSeamLeveling, 'skipLocalSeamLeveling': skipLocalSeamLeveling, 'skipHoleFilling': skipHoleFilling, 'keepUnseenFaces': keepUnseenFaces, 'toneMapping': self.params.tone_mapping, 'nadirMode': nadir, 'nadirWeight': 2**args.texturing_nadir_weight - 1, 'nvm_file': io.join_paths(tree.opensfm, "reconstruction.nvm") } # Make sure tmp directory is empty mvs_tmp_dir = os.path.join(r['out_dir'], 'tmp') if io.dir_exists(mvs_tmp_dir): log.ODM_INFO( "Removing old tmp directory {}".format(mvs_tmp_dir)) shutil.rmtree(mvs_tmp_dir) # run texturing binary system.run('{bin} {nvm_file} {model} {out_dir} ' '-d {dataTerm} -o {outlierRemovalType} ' '-t {toneMapping} ' '{skipGeometricVisibilityTest} ' '{skipGlobalSeamLeveling} ' '{skipLocalSeamLeveling} ' '{skipHoleFilling} ' '{keepUnseenFaces} ' '{nadirMode} ' '-n {nadirWeight}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % odm_textured_model_obj) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'mvs_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Orthophoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': self.params.resolution, 'verbose': verbose } # Have geo coordinates? if io.file_exists(tree.odm_georeferencing_coords): if args.use_25dmesh: kwargs['model_geo'] = os.path.join( tree.odm_25dtexturing, tree.odm_georeferencing_model_obj_geo) else: kwargs['model_geo'] = os.path.join( tree.odm_texturing, tree.odm_georeferencing_model_obj_geo) else: if args.use_25dmesh: kwargs['model_geo'] = os.path.join( tree.odm_25dtexturing, tree.odm_textured_model_obj) else: kwargs['model_geo'] = os.path.join( tree.odm_texturing, tree.odm_textured_model_obj) # run odm_orthophoto system.run( '{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) if not io.file_exists(tree.odm_georeferencing_coords): log.ODM_WARNING('No coordinates file. A georeferenced raster ' 'will not be created') else: # Create georeferenced GeoTiff geotiffcreated = False georef = types.ODM_GeoRef() # creates the coord refs # TODO I don't want to have to do this twice- after odm_georef georef.parse_coordinate_system(tree.odm_georeferencing_coords) if georef.epsg and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'tiled': '' if self.params.no_tiled else '-co TILED=yes ', 'compress': self.params.compress, 'predictor': '-co PREDICTOR=2 ' if self.params.compress in ['LZW', 'DEFLATE'] else '', 'epsg': georef.epsg, 't_srs': self.params.t_srs or "EPSG:{0}".format(georef.epsg), 'bigtiff': self.params.bigtiff, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log } system.run( 'gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{tiled} ' '-co BIGTIFF={bigtiff} ' '-co COMPRESS={compress} ' '{predictor} ' '-co BLOCKXSIZE=512 ' '-co BLOCKYSIZE=512 ' '-co NUM_THREADS=ALL_CPUS ' '-a_srs \"EPSG:{epsg}\" ' '{png} {tiff} > {log}'.format(**kwargs)) if self.params.build_overviews: log.ODM_DEBUG("Building Overviews") kwargs = { 'orthophoto': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_gdaladdo_log } # Run gdaladdo system.run( 'gdaladdo -ro -r average ' '--config BIGTIFF_OVERVIEW IF_SAFER ' '--config COMPRESS_OVERVIEW JPEG ' '{orthophoto} 2 4 8 16 > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING( 'No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVE Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction photos = reconstruction.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start MVE') return ecto.QUIT # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mve') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mve' in args.rerun_from) # check if reconstruction was done before if not io.file_exists(tree.mve_model) or rerun_cell: # cleanup if a rerun if io.dir_exists(tree.mve_path) and rerun_cell: shutil.rmtree(tree.mve_path) # make bundle directory if not io.file_exists(tree.mve_bundle): system.mkdir_p(tree.mve_path) system.mkdir_p(io.join_paths(tree.mve_path, 'bundle')) io.copy(tree.opensfm_image_list, tree.mve_image_list) io.copy(tree.opensfm_bundle, tree.mve_bundle) # mve makescene wants the output directory # to not exists before executing it (otherwise it # will prompt the user for confirmation) if io.dir_exists(tree.mve): shutil.rmtree(tree.mve) # run mve makescene if not io.dir_exists(tree.mve_views): system.run('%s %s %s' % (context.makescene_path, tree.mve_path, tree.mve), env_vars={'OMP_NUM_THREADS': args.max_concurrency}) # Compute mve output scale based on depthmap_resolution max_width = 0 max_height = 0 for photo in photos: max_width = max(photo.width, max_width) max_height = max(photo.height, max_height) max_pixels = args.depthmap_resolution * args.depthmap_resolution if max_width * max_height <= max_pixels: mve_output_scale = 0 else: ratio = float(max_width * max_height) / float(max_pixels) mve_output_scale = int(math.ceil(math.log(ratio) / math.log(4.0))) dmrecon_config = [ "-s%s" % mve_output_scale, "--progress=silent", "--local-neighbors=2", "--force", ] # Run MVE's dmrecon log.ODM_INFO(' ') log.ODM_INFO(' ,*/** ') log.ODM_INFO(' ,*@%*/@%* ') log.ODM_INFO(' ,/@%******@&*. ') log.ODM_INFO(' ,*@&*********/@&* ') log.ODM_INFO(' ,*@&**************@&* ') log.ODM_INFO(' ,/@&******************@&*. ') log.ODM_INFO(' ,*@&*********************/@&* ') log.ODM_INFO(' ,*@&**************************@&*. ') log.ODM_INFO(' ,/@&******************************&&*, ') log.ODM_INFO(' ,*&&**********************************@&*. ') log.ODM_INFO(' ,*@&**************************************@&*. ') log.ODM_INFO(' ,*@&***************#@@@@@@@@@%****************&&*, ') log.ODM_INFO(' .*&&***************&@@@@@@@@@@@@@@****************@@*. ') log.ODM_INFO(' .*@&***************&@@@@@@@@@@@@@@@@@%****(@@%********@@*. ') log.ODM_INFO(' .*@@***************%@@@@@@@@@@@@@@@@@@@@@#****&@@@@%******&@*, ') log.ODM_INFO(' .*&@****************@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@/*****@@*. ') log.ODM_INFO(' .*@@****************@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%*************@@*. ') log.ODM_INFO(' .*@@****/***********@@@@@&**(@@@@@@@@@@@@@@@@@@@@@@@#*****************%@*, ') log.ODM_INFO(' */@*******@*******#@@@@%*******/@@@@@@@@@@@@@@@@@@@@********************/@(, ') log.ODM_INFO(' ,*@(********&@@@@@@#**************/@@@@@@@#**(@@&/**********************@&* ') log.ODM_INFO(' *#@/*******************************@@@@@***&@&**********************&@*, ') log.ODM_INFO(' *#@#******************************&@@@***@#*********************&@*, ') log.ODM_INFO(' */@#*****************************@@@************************@@*. ') log.ODM_INFO(' *#@/***************************/@@/*********************%@*, ') log.ODM_INFO(' *#@#**************************#@@%******************%@*, ') log.ODM_INFO(' */@#*************************(@@@@@@@&%/********&@*. ') log.ODM_INFO(' *(@(*********************************/%@@%**%@*, ') log.ODM_INFO(' *(@%************************************%@** ') log.ODM_INFO(' **@%********************************&@*, ') log.ODM_INFO(' *(@(****************************%@/* ') log.ODM_INFO(' ,(@%************************#@/* ') log.ODM_INFO(' ,*@%********************&@/, ') log.ODM_INFO(' */@#****************#@/* ') log.ODM_INFO(' ,/@&************#@/* ') log.ODM_INFO(' ,*@&********%@/, ') log.ODM_INFO(' */@#****(@/* ') log.ODM_INFO(' ,/@@@@(* ') log.ODM_INFO(' .**, ') log.ODM_INFO('') log.ODM_INFO("Running dense reconstruction. This might take a while. Please be patient, the process is not dead or hung.") log.ODM_INFO(" Process is running") system.run('%s %s %s' % (context.dmrecon_path, ' '.join(dmrecon_config), tree.mve), env_vars={'OMP_NUM_THREADS': args.max_concurrency}) scene2pset_config = [ "-F%s" % mve_output_scale ] # run scene2pset system.run('%s %s "%s" "%s"' % (context.scene2pset_path, ' '.join(scene2pset_config), tree.mve, tree.mve_model), env_vars={'OMP_NUM_THREADS': args.max_concurrency}) else: log.ODM_WARNING('Found a valid MVE reconstruction file in: %s' % tree.mve_model) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'MVE') log.ODM_INFO('Running ODM MVE Cell - Finished') return ecto.OK if args.end_with != 'mve' else ecto.QUIT
def process(self, args, outputs): outputs['start_time'] = system.now_raw() tree = types.ODM_Tree(args.project_path, args.gcp, args.geo) outputs['tree'] = tree if args.time and io.file_exists(tree.benchmarking): # Delete the previously made file os.remove(tree.benchmarking) with open(tree.benchmarking, 'a') as b: b.write('ODM Benchmarking file created %s\nNumber of Cores: %s\n\n' % (system.now(), context.num_cores)) # check if the image filename is supported def valid_image_filename(filename): (pathfn, ext) = os.path.splitext(filename) return ext.lower() in context.supported_extensions and pathfn[-5:] != "_mask" # Get supported images from dir def get_images(in_dir): log.ODM_DEBUG(in_dir) entries = os.listdir(in_dir) valid, rejects = [], [] for f in entries: if valid_image_filename(f): valid.append(f) else: rejects.append(f) return valid, rejects def find_mask(photo_path, masks): (pathfn, ext) = os.path.splitext(os.path.basename(photo_path)) k = "{}_mask".format(pathfn) mask = masks.get(k) if mask: # Spaces are not supported due to OpenSfM's mask_list.txt format reqs if not " " in mask: return mask else: log.ODM_WARNING("Image mask {} has a space. Spaces are currently not supported for image masks.".format(mask)) # get images directory images_dir = tree.dataset_raw # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) log.ODM_INFO('Loading dataset from: %s' % images_dir) # check if we rerun cell or not images_database_file = os.path.join(tree.root_path, 'images.json') if not io.file_exists(images_database_file) or self.rerun(): if not os.path.exists(images_dir): raise system.ExitException("There are no images in %s! Make sure that your project path and dataset name is correct. The current is set to: %s" % (images_dir, args.project_path)) files, rejects = get_images(images_dir) if files: # create ODMPhoto list path_files = [os.path.join(images_dir, f) for f in files] # Lookup table for masks masks = {} for r in rejects: (p, ext) = os.path.splitext(r) if p[-5:] == "_mask" and ext.lower() in context.supported_extensions: masks[p] = r photos = [] with open(tree.dataset_list, 'w') as dataset_list: log.ODM_INFO("Loading %s images" % len(path_files)) for f in path_files: try: p = types.ODM_Photo(f) p.set_mask(find_mask(f, masks)) photos.append(p) dataset_list.write(photos[-1].filename + '\n') except PhotoCorruptedException: log.ODM_WARNING("%s seems corrupted and will not be used" % os.path.basename(f)) # Check if a geo file is available if tree.odm_geo_file is not None and os.path.isfile(tree.odm_geo_file): log.ODM_INFO("Found image geolocation file") gf = GeoFile(tree.odm_geo_file) updated = 0 for p in photos: entry = gf.get_entry(p.filename) if entry: p.update_with_geo_entry(entry) p.compute_opk() updated += 1 log.ODM_INFO("Updated %s image positions" % updated) # GPSDOP override if we have GPS accuracy information (such as RTK) if 'gps_accuracy_is_set' in args: log.ODM_INFO("Forcing GPS DOP to %s for all images" % args.gps_accuracy) for p in photos: p.override_gps_dop(args.gps_accuracy) # Override projection type if args.camera_lens != "auto": log.ODM_INFO("Setting camera lens to %s for all images" % args.camera_lens) for p in photos: p.override_camera_projection(args.camera_lens) # Automatic sky removal if args.sky_removal: # For each image that : # - Doesn't already have a mask, AND # - Is not nadir (or if orientation info is missing), AND # - There are no spaces in the image filename (OpenSfM requirement) # Automatically generate a sky mask # Generate list of sky images sky_images = [] for p in photos: if p.mask is None and (p.pitch is None or (abs(p.pitch) > 20)) and (not " " in p.filename): sky_images.append({'file': os.path.join(images_dir, p.filename), 'p': p}) if len(sky_images) > 0: log.ODM_INFO("Automatically generating sky masks for %s images" % len(sky_images)) model = ai.get_model("skyremoval", "https://github.com/OpenDroneMap/SkyRemoval/releases/download/v1.0.5/model.zip", "v1.0.5") if model is not None: sf = SkyFilter(model=model) def parallel_sky_filter(item): try: mask_file = sf.run_img(item['file'], images_dir) # Check and set if mask_file is not None and os.path.isfile(mask_file): item['p'].set_mask(os.path.basename(mask_file)) log.ODM_INFO("Wrote %s" % os.path.basename(mask_file)) else: log.ODM_WARNING("Cannot generate mask for %s" % img) except Exception as e: log.ODM_WARNING("Cannot generate mask for %s: %s" % (img, str(e))) parallel_map(parallel_sky_filter, sky_images, max_workers=args.max_concurrency) log.ODM_INFO("Sky masks generation completed!") else: log.ODM_WARNING("Cannot load AI model (you might need to be connected to the internet?)") else: log.ODM_INFO("No sky masks will be generated (masks already provided, or images are nadir)") # End sky removal # Save image database for faster restart save_images_database(photos, images_database_file) else: raise system.ExitException('Not enough supported images in %s' % images_dir) else: # We have an images database, just load it photos = load_images_database(images_database_file) log.ODM_INFO('Found %s usable images' % len(photos)) log.logger.log_json_images(len(photos)) # Create reconstruction object reconstruction = types.ODM_Reconstruction(photos) if tree.odm_georeferencing_gcp and not args.use_exif: reconstruction.georeference_with_gcp(tree.odm_georeferencing_gcp, tree.odm_georeferencing_coords, tree.odm_georeferencing_gcp_utm, tree.odm_georeferencing_model_txt_geo, rerun=self.rerun()) else: reconstruction.georeference_with_gps(tree.dataset_raw, tree.odm_georeferencing_coords, tree.odm_georeferencing_model_txt_geo, rerun=self.rerun()) reconstruction.save_proj_srs(os.path.join(tree.odm_georeferencing, tree.odm_georeferencing_proj)) outputs['reconstruction'] = reconstruction # Try to load boundaries if args.boundary: if reconstruction.is_georeferenced(): outputs['boundary'] = boundary.load_boundary(args.boundary, reconstruction.get_proj_srs()) else: args.boundary = None log.ODM_WARNING("Reconstruction is not georeferenced, but boundary file provided (will ignore boundary file)") # If sfm-algorithm is triangulation, check if photos have OPK if args.sfm_algorithm == 'triangulation': for p in photos: if not p.has_opk(): log.ODM_WARNING("No omega/phi/kappa angles found in input photos (%s), switching sfm-algorithm to incremental" % p.filename) args.sfm_algorithm = 'incremental' break
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM DEM Cell') # get inputs args = self.inputs.args tree = self.inputs.tree las_model_found = io.file_exists(tree.odm_georeferencing_model_laz) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_dem') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_dem' in args.rerun_from) log.ODM_INFO('Classify: ' + str(args.pc_classify != "none")) log.ODM_INFO('Create DSM: ' + str(args.dsm)) log.ODM_INFO('Create DTM: ' + str(args.dtm)) log.ODM_INFO('DEM input file {0} found: {1}'.format( tree.odm_georeferencing_model_laz, str(las_model_found))) # Setup terrain parameters terrain_params_map = { 'flatnonforest': (1, 3), 'flatforest': (1, 2), 'complexnonforest': (5, 2), 'complexforest': (10, 2) } terrain_params = terrain_params_map[args.dem_terrain_type.lower()] slope, cellsize = terrain_params # define paths and create working directories odm_dem_root = tree.path('odm_dem') if not io.dir_exists(odm_dem_root): system.mkdir_p(odm_dem_root) if args.pc_classify != "none" and las_model_found: pc_classify_marker = os.path.join(odm_dem_root, 'pc_classify_done.txt') if not io.file_exists(pc_classify_marker) or rerun_cell: log.ODM_INFO("Classifying {} using {}".format( tree.odm_georeferencing_model_laz, args.pc_classify)) commands.classify(tree.odm_georeferencing_model_laz, args.pc_classify == "smrf", slope, cellsize, approximate=args.dem_approximate, initialDistance=args.dem_initial_distance, verbose=args.verbose) with open(pc_classify_marker, 'w') as f: f.write('Classify: {}\n'.format(args.pc_classify)) f.write('Slope: {}\n'.format(slope)) f.write('Cellsize: {}\n'.format(cellsize)) f.write('Approximate: {}\n'.format(args.dem_approximate)) f.write('InitialDistance: {}\n'.format( args.dem_initial_distance)) # Do we need to process anything here? if (args.dsm or args.dtm) and las_model_found: dsm_output_filename = os.path.join(odm_dem_root, 'dsm.tif') dtm_output_filename = os.path.join(odm_dem_root, 'dtm.tif') if (args.dtm and not io.file_exists(dtm_output_filename)) or \ (args.dsm and not io.file_exists(dsm_output_filename)) or \ rerun_cell: products = [] if args.dsm: products.append('dsm') if args.dtm: products.append('dtm') resolution = gsd.cap_resolution(args.dem_resolution, tree.opensfm_reconstruction, gsd_error_estimate=-3, ignore_gsd=args.ignore_gsd) radius_steps = [(resolution / 100.0) / 2.0] for _ in range(args.dem_gapfill_steps - 1): radius_steps.append( radius_steps[-1] * 2) # 2 is arbitrary, maybe there's a better value? for product in products: commands.create_dems( [tree.odm_georeferencing_model_laz], product, radius=map(str, radius_steps), gapfill=True, outdir=odm_dem_root, resolution=resolution / 100.0, maxsd=args.dem_maxsd, maxangle=args.dem_maxangle, decimation=args.dem_decimation, verbose=args.verbose, max_workers=get_max_concurrency_for_dem( args.max_concurrency, tree.odm_georeferencing_model_laz)) if args.crop > 0: bounds_shapefile_path = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.shp') if os.path.exists(bounds_shapefile_path): Cropper.crop( bounds_shapefile_path, os.path.join(odm_dem_root, "{}.tif".format(product)), { 'TILED': 'YES', 'COMPRESS': 'LZW', 'BLOCKXSIZE': 512, 'BLOCKYSIZE': 512, 'NUM_THREADS': self.params.max_concurrency }) else: log.ODM_WARNING('Found existing outputs in: %s' % odm_dem_root) else: log.ODM_WARNING('DEM will not be generated') if args.time: system.benchmark(start_time, tree.benchmarking, 'Dem') log.ODM_INFO('Running ODM DEM Cell - Finished') return ecto.OK if args.end_with != 'odm_dem' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM OpenSfM Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction photos = reconstruction.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start OpenSfM') return ecto.QUIT # create working directories system.mkdir_p(tree.opensfm) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'opensfm') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'opensfm' in args.rerun_from) if args.fast_orthophoto: output_file = io.join_paths(tree.opensfm, 'reconstruction.ply') elif args.use_opensfm_dense: output_file = tree.opensfm_model else: output_file = tree.opensfm_reconstruction # check if reconstruction was done before if not io.file_exists(output_file) or rerun_cell: # create file list list_path = io.join_paths(tree.opensfm, 'image_list.txt') has_alt = True with open(list_path, 'w') as fout: for photo in photos: if not photo.altitude: has_alt = False fout.write('%s\n' % io.join_paths(tree.dataset_raw, photo.filename)) # create config file for OpenSfM config = [ "use_exif_size: %s" % ('no' if not self.params.use_exif_size else 'yes'), "feature_process_size: %s" % self.params.feature_process_size, "feature_min_frames: %s" % self.params.feature_min_frames, "processes: %s" % self.params.processes, "matching_gps_neighbors: %s" % self.params.matching_gps_neighbors, "depthmap_method: %s" % args.opensfm_depthmap_method, "depthmap_resolution: %s" % args.depthmap_resolution, "depthmap_min_patch_sd: %s" % args.opensfm_depthmap_min_patch_sd, "depthmap_min_consistent_views: %s" % args.opensfm_depthmap_min_consistent_views, "optimize_camera_parameters: %s" % ('no' if self.params.fixed_camera_params else 'yes') ] if has_alt: log.ODM_DEBUG("Altitude data detected, enabling it for GPS alignment") config.append("use_altitude_tag: yes") config.append("align_method: naive") else: config.append("align_method: orientation_prior") config.append("align_orientation_prior: vertical") if args.use_hybrid_bundle_adjustment: log.ODM_DEBUG("Enabling hybrid bundle adjustment") config.append("bundle_interval: 100") # Bundle after adding 'bundle_interval' cameras config.append("bundle_new_points_ratio: 1.2") # Bundle when (new points) / (bundled points) > bundle_new_points_ratio config.append("local_bundle_radius: 1") # Max image graph distance for images to be included in local bundle adjustment if args.matcher_distance > 0: config.append("matching_gps_distance: %s" % self.params.matching_gps_distance) if tree.odm_georeferencing_gcp: config.append("bundle_use_gcp: yes") io.copy(tree.odm_georeferencing_gcp, tree.opensfm) # write config file log.ODM_DEBUG(config) config_filename = io.join_paths(tree.opensfm, 'config.yaml') with open(config_filename, 'w') as fout: fout.write("\n".join(config)) # run OpenSfM reconstruction matched_done_file = io.join_paths(tree.opensfm, 'matching_done.txt') if not io.file_exists(matched_done_file) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm extract_metadata %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm detect_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm match_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) with open(matched_done_file, 'w') as fout: fout.write("Matching done!\n") else: log.ODM_WARNING('Found a feature matching done progress file in: %s' % matched_done_file) if not io.file_exists(tree.opensfm_tracks) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm create_tracks %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM tracks file in: %s' % tree.opensfm_tracks) if not io.file_exists(tree.opensfm_reconstruction) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm reconstruct %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) # Check that a reconstruction file has been created if not io.file_exists(tree.opensfm_reconstruction): log.ODM_ERROR("The program could not process this dataset using the current settings. " "Check that the images have enough overlap, " "that there are enough recognizable features " "and that the images are in focus. " "You could also try to increase the --min-num-features parameter." "The program will now exit.") sys.exit(1) # Always export VisualSFM's reconstruction and undistort images # as we'll use these for texturing (after GSD estimation and resizing) if not args.ignore_gsd: image_scale = gsd.image_scale_factor(args.orthophoto_resolution, tree.opensfm_reconstruction) else: image_scale = 1.0 if not io.file_exists(tree.opensfm_reconstruction_nvm) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm export_visualsfm --image_extension png --scale_focal %s %s' % (context.pyopencv_path, context.opensfm_path, image_scale, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM NVM reconstruction file in: %s' % tree.opensfm_reconstruction_nvm) # These will be used for texturing system.run('PYTHONPATH=%s %s/bin/opensfm undistort --image_format png --image_scale %s %s' % (context.pyopencv_path, context.opensfm_path, image_scale, tree.opensfm)) # Skip dense reconstruction if necessary and export # sparse reconstruction instead if args.fast_orthophoto: system.run('PYTHONPATH=%s %s/bin/opensfm export_ply --no-cameras %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) elif args.use_opensfm_dense: # Undistort images at full scale in JPG # (TODO: we could compare the size of the PNGs if they are < than depthmap_resolution # and use those instead of re-exporting full resolution JPGs) system.run('PYTHONPATH=%s %s/bin/opensfm undistort %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm compute_depthmaps %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to bundler before if not io.file_exists(tree.opensfm_bundle_list) or rerun_cell: # convert back to bundler's format system.run('PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid Bundler file in: %s' % tree.opensfm_reconstruction) if reconstruction.georef: system.run('PYTHONPATH=%s %s/bin/opensfm export_geocoords %s --transformation --proj \'%s\'' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, reconstruction.georef.projection.srs)) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'OpenSfM') log.ODM_INFO('Running ODM OpenSfM Cell - Finished') return ecto.OK if args.end_with != 'opensfm' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction gcpfile = tree.odm_georeferencing_gcp doPointCloudGeo = True transformPointCloud = True verbose = '-verbose' if self.params.verbose else '' geo_ref = reconstruction.georef # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_georeferencing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_georeferencing' in args.rerun_from) runs = [{ 'georeferencing_dir': tree.odm_georeferencing, 'texturing_dir': tree.odm_texturing, 'model': os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) }] if args.skip_3dmodel: runs = [] if not args.use_3dmesh: # Make sure 2.5D mesh is georeferenced before the 3D mesh # Because it will be used to calculate a transform # for the point cloud. If we use the 3D model transform, # DEMs and orthophoto might not align! runs.insert(0, { 'georeferencing_dir': tree.odm_25dgeoreferencing, 'texturing_dir': tree.odm_25dtexturing, 'model': os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) }) for r in runs: odm_georeferencing_model_obj_geo = os.path.join(r['texturing_dir'], tree.odm_georeferencing_model_obj_geo) odm_georeferencing_log = os.path.join(r['georeferencing_dir'], tree.odm_georeferencing_log) odm_georeferencing_transform_file = os.path.join(r['georeferencing_dir'], tree.odm_georeferencing_transform_file) odm_georeferencing_model_txt_geo_file = os.path.join(r['georeferencing_dir'], tree.odm_georeferencing_model_txt_geo) if not io.file_exists(odm_georeferencing_model_obj_geo) or \ not io.file_exists(tree.odm_georeferencing_model_laz) or rerun_cell: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'input_pc_file': tree.filtered_point_cloud, 'bundle': tree.opensfm_bundle, 'imgs': tree.dataset_raw, 'imgs_list': tree.opensfm_bundle_list, 'model': r['model'], 'log': odm_georeferencing_log, 'input_trans_file': tree.opensfm_transformation, 'transform_file': odm_georeferencing_transform_file, 'coords': tree.odm_georeferencing_coords, 'output_pc_file': tree.odm_georeferencing_model_laz, 'geo_sys': odm_georeferencing_model_txt_geo_file, 'model_geo': odm_georeferencing_model_obj_geo, 'gcp': gcpfile, 'verbose': verbose } if transformPointCloud: kwargs['pc_params'] = '-inputPointCloudFile {input_pc_file} -outputPointCloudFile {output_pc_file}'.format(**kwargs) if geo_ref and geo_ref.projection and geo_ref.projection.srs: kwargs['pc_params'] += ' -outputPointCloudSrs %s' % pipes.quote(geo_ref.projection.srs) else: log.ODM_WARNING('NO SRS: The output point cloud will not have a SRS.') else: kwargs['pc_params'] = '' # Check to see if the GCP file exists if not self.params.use_exif and (self.params.gcp_file or tree.odm_georeferencing_gcp): log.ODM_INFO('Found %s' % gcpfile) try: system.run('{bin}/odm_georef -bundleFile {bundle} -imagesPath {imgs} -imagesListPath {imgs_list} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys} -gcpFile {gcp} ' '-outputCoordFile {coords}'.format(**kwargs)) except Exception: log.ODM_EXCEPTION('Georeferencing failed. ') return ecto.QUIT elif io.file_exists(tree.opensfm_transformation) and io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO('Running georeferencing with OpenSfM transformation matrix') system.run('{bin}/odm_georef -bundleFile {bundle} -inputTransformFile {input_trans_file} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}'.format(**kwargs)) elif io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO('Running georeferencing with generated coords file.') system.run('{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}'.format(**kwargs)) else: log.ODM_WARNING('Georeferencing failed. Make sure your ' 'photos have geotags in the EXIF or you have ' 'provided a GCP file. ') doPointCloudGeo = False # skip the rest of the georeferencing if doPointCloudGeo: # update images metadata geo_ref.extract_offsets(odm_georeferencing_model_txt_geo_file) reconstruction.georef = geo_ref # XYZ point cloud output if args.pc_csv: log.ODM_INFO("Creating geo-referenced CSV file (XYZ format)") system.run("pdal translate -i \"{}\" " "-o \"{}\" " "--writers.text.format=csv " "--writers.text.order=\"X,Y,Z\" " "--writers.text.keep_unspecified=false ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_xyz_file)) # LAS point cloud output if args.pc_las: log.ODM_INFO("Creating geo-referenced LAS file") system.run("pdal translate -i \"{}\" " "-o \"{}\" ".format( tree.odm_georeferencing_model_laz, tree.odm_georeferencing_model_las)) if args.crop > 0: log.ODM_INFO("Calculating cropping area and generating bounds shapefile from point cloud") cropper = Cropper(tree.odm_georeferencing, 'odm_georeferenced_model') decimation_step = 40 if args.fast_orthophoto or args.use_opensfm_dense else 90 # More aggressive decimation for large datasets if not args.fast_orthophoto: decimation_step *= int(len(reconstruction.photos) / 1000) + 1 cropper.create_bounds_shapefile(tree.odm_georeferencing_model_laz, args.crop, decimation_step=decimation_step, outlier_radius=20 if args.fast_orthophoto else 2) # Do not execute a second time, since # We might be doing georeferencing for # multiple models (3D, 2.5D, ...) doPointCloudGeo = False transformPointCloud = False else: log.ODM_WARNING('Found a valid georeferenced model in: %s' % tree.odm_georeferencing_model_laz) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Georeferencing') log.ODM_INFO('Running ODM Georeferencing Cell - Finished') return ecto.OK if args.end_with != 'odm_georeferencing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Georeferencing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction gcpfile = tree.odm_georeferencing_gcp doPointCloudGeo = True transformPointCloud = True verbose = '-verbose' if self.params.verbose else '' # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_georeferencing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_georeferencing' in args.rerun_from) runs = [{ 'georeferencing_dir': tree.odm_georeferencing, 'texturing_dir': tree.odm_texturing, 'model': os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) }] if args.skip_3dmodel: runs = [] if not args.use_3dmesh: runs += [{ 'georeferencing_dir': tree.odm_25dgeoreferencing, 'texturing_dir': tree.odm_25dtexturing, 'model': os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) }] for r in runs: odm_georeferencing_model_obj_geo = os.path.join( r['texturing_dir'], tree.odm_georeferencing_model_obj_geo) odm_georeferencing_model_ply_geo = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_model_ply_geo) odm_georeferencing_log = os.path.join(r['georeferencing_dir'], tree.odm_georeferencing_log) odm_georeferencing_transform_file = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_transform_file) odm_georeferencing_model_txt_geo_file = os.path.join( r['georeferencing_dir'], tree.odm_georeferencing_model_txt_geo) if not io.file_exists(odm_georeferencing_model_obj_geo) or \ not io.file_exists(odm_georeferencing_model_ply_geo) or rerun_cell: # odm_georeference definitions kwargs = { 'bin': context.odm_modules_path, 'bundle': tree.opensfm_bundle, 'imgs': tree.dataset_raw, 'imgs_list': tree.opensfm_bundle_list, 'model': r['model'], 'log': odm_georeferencing_log, 'input_trans_file': tree.opensfm_transformation, 'transform_file': odm_georeferencing_transform_file, 'coords': tree.odm_georeferencing_coords, 'pc_geo': odm_georeferencing_model_ply_geo, 'geo_sys': odm_georeferencing_model_txt_geo_file, 'model_geo': odm_georeferencing_model_obj_geo, 'gcp': gcpfile, 'verbose': verbose } if args.fast_orthophoto: kwargs['pc'] = os.path.join(tree.opensfm, 'reconstruction.ply') elif args.use_opensfm_dense: kwargs['pc'] = tree.opensfm_model else: kwargs['pc'] = tree.smvs_model if transformPointCloud: kwargs[ 'pc_params'] = '-inputPointCloudFile {pc} -outputPointCloudFile {pc_geo}'.format( **kwargs) else: kwargs['pc_params'] = '' # Check to see if the GCP file exists if not self.params.use_exif and (self.params.gcp_file or tree.odm_georeferencing_gcp): log.ODM_INFO('Found %s' % gcpfile) try: system.run( '{bin}/odm_georef -bundleFile {bundle} -imagesPath {imgs} -imagesListPath {imgs_list} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys} -gcpFile {gcp} ' '-outputCoordFile {coords}'.format(**kwargs)) except Exception: log.ODM_EXCEPTION('Georeferencing failed. ') return ecto.QUIT elif io.file_exists( tree.opensfm_transformation) and io.file_exists( tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with OpenSfM transformation matrix' ) system.run( '{bin}/odm_georef -bundleFile {bundle} -inputTransformFile {input_trans_file} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}' .format(**kwargs)) elif io.file_exists(tree.odm_georeferencing_coords): log.ODM_INFO( 'Running georeferencing with generated coords file.') system.run( '{bin}/odm_georef -bundleFile {bundle} -inputCoordFile {coords} ' '-inputFile {model} -outputFile {model_geo} ' '{pc_params} {verbose} ' '-logFile {log} -outputTransformFile {transform_file} -georefFileOutputPath {geo_sys}' .format(**kwargs)) else: log.ODM_WARNING( 'Georeferencing failed. Make sure your ' 'photos have geotags in the EXIF or you have ' 'provided a GCP file. ') doPointCloudGeo = False # skip the rest of the georeferencing if doPointCloudGeo: # update images metadata geo_ref = reconstruction.georef geo_ref.extract_offsets( odm_georeferencing_model_txt_geo_file) # convert ply model to LAS reference system geo_ref.convert_to_las(odm_georeferencing_model_ply_geo, tree.odm_georeferencing_model_laz, tree.odm_georeferencing_las_json) reconstruction.georef = geo_ref # XYZ point cloud output if args.pc_csv: log.ODM_INFO( "Creating geo-referenced CSV file (XYZ format)") with open(tree.odm_georeferencing_xyz_file, "wb") as csvfile: csvfile_writer = csv.writer(csvfile, delimiter=",") with open(odm_georeferencing_model_ply_geo) as f: endianess = '<' # little endian while True: line = f.readline() if "binary_big_endian" in line: endianess = '>' if line.startswith("end_header"): break fmt = '{}dddBBB'.format(endianess) while True: chunk = f.read(27) # 3 doubles, 3 uints if len(chunk) < 27: break tokens = struct.unpack(fmt, chunk) csv_line = [ float(tokens[0]), float(tokens[1]), tokens[2] ] csvfile_writer.writerow(csv_line) if args.crop > 0: log.ODM_INFO( "Calculating cropping area and generating bounds shapefile from point cloud" ) cropper = Cropper(tree.odm_georeferencing, 'odm_georeferenced_model') cropper.create_bounds_shapefile( tree.odm_georeferencing_model_laz, args.crop, decimation_step=40 if args.fast_orthophoto or args.use_opensfm_dense else 90, outlier_radius=20 if args.fast_orthophoto else 2) # Do not execute a second time, since # We might be doing georeferencing for # multiple models (3D, 2.5D, ...) doPointCloudGeo = False transformPointCloud = False else: log.ODM_WARNING('Found a valid georeferenced model in: %s' % odm_georeferencing_model_ply_geo) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Georeferencing') log.ODM_INFO('Running ODM Georeferencing Cell - Finished') return ecto.OK if args.end_with != 'odm_georeferencing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Resize Cell') # get inputs args = self.inputs.args tree = self.inputs.tree photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos to resize') return ecto.QUIT if self.params.resize_to <= 0: log.ODM_ERROR('Resize parameter must be greater than 0') return ecto.QUIT # create working directory system.mkdir_p(tree.dataset_resize) log.ODM_DEBUG('Resizing dataset to: %s' % tree.dataset_resize) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'resize') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'resize' in args.rerun_from) # loop over photos for photo in photos: # define image paths path_file = photo.path_file new_path_file = io.join_paths(tree.dataset_resize, photo.filename) # set raw image path in case we want to rerun cell if io.file_exists(new_path_file) and rerun_cell: path_file = io.join_paths(tree.dataset_raw, photo.filename) if not io.file_exists(new_path_file) or rerun_cell: # open and resize image with opencv img = cv2.imread(path_file) # compute new size max_side = max(img.shape[0], img.shape[1]) if max_side <= self.params.resize_to: log.ODM_WARNING( 'Resize Parameter is greater than the largest side of the image' ) ratio = float(self.params.resize_to) / float(max_side) img_r = cv2.resize(img, None, fx=ratio, fy=ratio) # write image with opencv cv2.imwrite(new_path_file, img_r) # read metadata with pyexiv2 old_meta = pyexiv2.ImageMetadata(path_file) new_meta = pyexiv2.ImageMetadata(new_path_file) old_meta.read() new_meta.read() # copy metadata old_meta.copy(new_meta) # update metadata size new_meta['Exif.Photo.PixelXDimension'] = img_r.shape[0] new_meta['Exif.Photo.PixelYDimension'] = img_r.shape[1] new_meta.write() # update photos array with new values photo.path_file = new_path_file photo.width = img_r.shape[0] photo.height = img_r.shape[1] photo.update_focal() # log message log.ODM_DEBUG('Resized %s | dimensions: %s' % (photo.filename, img_r.shape)) else: # log message log.ODM_WARNING('Already resized %s | dimensions: %s x %s' % (photo.filename, photo.width, photo.height)) log.ODM_INFO('Resized %s images' % len(photos)) # append photos to cell output self.outputs.photos = photos if args.time: system.benchmark(start_time, tree.benchmarking, 'Resizing') log.ODM_INFO('Running ODM Resize Cell - Finished') return ecto.OK if args.end_with != 'resize' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVS Texturing Cell') # get inputs args = inputs.args tree = inputs.tree reconstruction = inputs.reconstruction # define paths and create working directories system.mkdir_p(tree.odm_texturing) if not args.use_3dmesh: system.mkdir_p(tree.odm_25dtexturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mvs_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mvs_texturing' in args.rerun_from) runs = [{ 'out_dir': tree.odm_texturing, 'model': tree.odm_mesh, 'nadir': False }] if args.skip_3dmodel: runs = [] if not args.use_3dmesh: runs += [{ 'out_dir': tree.odm_25dtexturing, 'model': tree.odm_25dmesh, 'nadir': True }] for r in runs: odm_textured_model_obj = os.path.join(r['out_dir'], tree.odm_textured_model_obj) if not io.file_exists(odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing MVS Textured file in: %s' % odm_textured_model_obj) # Format arguments to fit Mvs-Texturing app skipGeometricVisibilityTest = "" skipGlobalSeamLeveling = "" skipLocalSeamLeveling = "" skipHoleFilling = "" keepUnseenFaces = "" nadir = "" if (self.params.skip_vis_test): skipGeometricVisibilityTest = "--skip_geometric_visibility_test" if (self.params.skip_glob_seam_leveling): skipGlobalSeamLeveling = "--skip_global_seam_leveling" if (self.params.skip_loc_seam_leveling): skipLocalSeamLeveling = "--skip_local_seam_leveling" if (self.params.skip_hole_fill): skipHoleFilling = "--skip_hole_filling" if (self.params.keep_unseen_faces): keepUnseenFaces = "--keep_unseen_faces" if (r['nadir']): nadir = '--nadir_mode' # mvstex definitions kwargs = { 'bin': context.mvstex_path, 'out_dir': io.join_paths(r['out_dir'], "odm_textured_model"), 'model': r['model'], 'dataTerm': self.params.data_term, 'outlierRemovalType': self.params.outlier_rem_type, 'skipGeometricVisibilityTest': skipGeometricVisibilityTest, 'skipGlobalSeamLeveling': skipGlobalSeamLeveling, 'skipLocalSeamLeveling': skipLocalSeamLeveling, 'skipHoleFilling': skipHoleFilling, 'keepUnseenFaces': keepUnseenFaces, 'toneMapping': self.params.tone_mapping, 'nadirMode': nadir, 'nadirWeight': 2 ** args.texturing_nadir_weight - 1, 'nvm_file': io.join_paths(tree.opensfm, "reconstruction.nvm") } # Make sure tmp directory is empty mvs_tmp_dir = os.path.join(r['out_dir'], 'tmp') if io.dir_exists(mvs_tmp_dir): log.ODM_INFO("Removing old tmp directory {}".format(mvs_tmp_dir)) shutil.rmtree(mvs_tmp_dir) # run texturing binary system.run('{bin} {nvm_file} {model} {out_dir} ' '-d {dataTerm} -o {outlierRemovalType} ' '-t {toneMapping} ' '{skipGeometricVisibilityTest} ' '{skipGlobalSeamLeveling} ' '{skipLocalSeamLeveling} ' '{skipHoleFilling} ' '{keepUnseenFaces} ' '{nadirMode} ' '-n {nadirWeight}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % odm_textured_model_obj) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'mvs_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVS Texturing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # define paths and create working directories system.mkdir_p(tree.odm_texturing) if args.use_25dmesh: system.mkdir_p(tree.odm_25dtexturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mvs_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mvs_texturing' in args.rerun_from) runs = [{ 'out_dir': tree.odm_texturing, 'model': tree.odm_mesh, 'force_skip_vis_test': False }] if args.fast_orthophoto: runs = [] if args.use_25dmesh: runs += [{ 'out_dir': tree.odm_25dtexturing, 'model': tree.odm_25dmesh, # We always skip the visibility test when using the 2.5D mesh # because many faces end up being narrow, and almost perpendicular # to the ground plane. The visibility test improperly classifies # them as "not seen" since the test is done on a single triangle vertex, # and while one vertex might be occluded, the other two might not. 'force_skip_vis_test': True }] for r in runs: odm_textured_model_obj = os.path.join(r['out_dir'], tree.odm_textured_model_obj) if not io.file_exists(odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing MVS Textured file in: %s' % odm_textured_model_obj) # Format arguments to fit Mvs-Texturing app skipGeometricVisibilityTest = "" skipGlobalSeamLeveling = "" skipLocalSeamLeveling = "" skipHoleFilling = "" keepUnseenFaces = "" if (self.params.skip_vis_test or r['force_skip_vis_test']): skipGeometricVisibilityTest = "--skip_geometric_visibility_test" if (self.params.skip_glob_seam_leveling): skipGlobalSeamLeveling = "--skip_global_seam_leveling" if (self.params.skip_loc_seam_leveling): skipLocalSeamLeveling = "--skip_local_seam_leveling" if (self.params.skip_hole_fill): skipHoleFilling = "--skip_hole_filling" if (self.params.keep_unseen_faces): keepUnseenFaces = "--keep_unseen_faces" # mvstex definitions kwargs = { 'bin': context.mvstex_path, 'out_dir': io.join_paths(r['out_dir'], "odm_textured_model"), 'pmvs_folder': tree.pmvs_rec_path, 'nvm_file': io.join_paths(tree.pmvs_rec_path, "nvmCams.nvm"), 'model': r['model'], 'dataTerm': self.params.data_term, 'outlierRemovalType': self.params.outlier_rem_type, 'skipGeometricVisibilityTest': skipGeometricVisibilityTest, 'skipGlobalSeamLeveling': skipGlobalSeamLeveling, 'skipLocalSeamLeveling': skipLocalSeamLeveling, 'skipHoleFilling': skipHoleFilling, 'keepUnseenFaces': keepUnseenFaces, 'toneMapping': self.params.tone_mapping } if not args.use_pmvs: kwargs['nvm_file'] = io.join_paths(tree.opensfm, "reconstruction.nvm") else: log.ODM_DEBUG('Generating .nvm file from pmvs output: %s' % '{nvm_file}'.format(**kwargs)) # Create .nvm camera file. pmvs2nvmcams.run('{pmvs_folder}'.format(**kwargs), '{nvm_file}'.format(**kwargs)) # run texturing binary system.run('{bin} {nvm_file} {model} {out_dir} ' '-d {dataTerm} -o {outlierRemovalType} ' '-t {toneMapping} ' '{skipGeometricVisibilityTest} ' '{skipGlobalSeamLeveling} ' '{skipLocalSeamLeveling} ' '{skipHoleFilling} ' '{keepUnseenFaces}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % odm_textured_model_obj) if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'mvs_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM OpenSfM Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction photos = reconstruction.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start OpenSfM') return ecto.QUIT # create working directories system.mkdir_p(tree.opensfm) system.mkdir_p(tree.pmvs) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'opensfm') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'opensfm' in args.rerun_from) if not args.use_pmvs: output_file = tree.opensfm_model if args.fast_orthophoto: output_file = io.join_paths(tree.opensfm, 'reconstruction.ply') else: output_file = tree.opensfm_reconstruction # check if reconstruction was done before if not io.file_exists(output_file) or rerun_cell: # create file list list_path = io.join_paths(tree.opensfm, 'image_list.txt') has_alt = True with open(list_path, 'w') as fout: for photo in photos: if not photo.altitude: has_alt = False fout.write('%s\n' % photo.path_file) # create config file for OpenSfM config = [ "use_exif_size: %s" % ('no' if not self.params.use_exif_size else 'yes'), "feature_process_size: %s" % self.params.feature_process_size, "feature_min_frames: %s" % self.params.feature_min_frames, "processes: %s" % self.params.processes, "matching_gps_neighbors: %s" % self.params.matching_gps_neighbors, "depthmap_method: %s" % args.opensfm_depthmap_method, "depthmap_resolution: %s" % args.opensfm_depthmap_resolution, "depthmap_min_patch_sd: %s" % args.opensfm_depthmap_min_patch_sd, "depthmap_min_consistent_views: %s" % args.opensfm_depthmap_min_consistent_views, "optimize_camera_parameters: %s" % ('no' if self.params.fixed_camera_params else 'yes') ] if has_alt: log.ODM_DEBUG( "Altitude data detected, enabling it for GPS alignment") config.append("use_altitude_tag: True") config.append("align_method: naive") if args.use_hybrid_bundle_adjustment: log.ODM_DEBUG("Enabling hybrid bundle adjustment") config.append( "bundle_interval: 100" ) # Bundle after adding 'bundle_interval' cameras config.append( "bundle_new_points_ratio: 1.2" ) # Bundle when (new points) / (bundled points) > bundle_new_points_ratio config.append( "local_bundle_radius: 1" ) # Max image graph distance for images to be included in local bundle adjustment if args.matcher_distance > 0: config.append("matching_gps_distance: %s" % self.params.matching_gps_distance) if tree.odm_georeferencing_gcp: config.append("bundle_use_gcp: yes") io.copy(tree.odm_georeferencing_gcp, tree.opensfm) # write config file log.ODM_DEBUG(config) config_filename = io.join_paths(tree.opensfm, 'config.yaml') with open(config_filename, 'w') as fout: fout.write("\n".join(config)) # run OpenSfM reconstruction matched_done_file = io.join_paths(tree.opensfm, 'matching_done.txt') if not io.file_exists(matched_done_file) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm extract_metadata %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm detect_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) system.run('PYTHONPATH=%s %s/bin/opensfm match_features %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) with open(matched_done_file, 'w') as fout: fout.write("Matching done!\n") else: log.ODM_WARNING( 'Found a feature matching done progress file in: %s' % matched_done_file) if not io.file_exists(tree.opensfm_tracks) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm create_tracks %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM tracks file in: %s' % tree.opensfm_tracks) if not io.file_exists(tree.opensfm_reconstruction) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm reconstruct %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) if not io.file_exists( tree.opensfm_reconstruction_meshed) or rerun_cell: system.run('PYTHONPATH=%s %s/bin/opensfm mesh %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM meshed reconstruction file in: %s' % tree.opensfm_reconstruction_meshed) if not args.use_pmvs: if not io.file_exists( tree.opensfm_reconstruction_nvm) or rerun_cell: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_visualsfm %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM NVM reconstruction file in: %s' % tree.opensfm_reconstruction_nvm) system.run('PYTHONPATH=%s %s/bin/opensfm undistort %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) # Skip dense reconstruction if necessary and export # sparse reconstruction instead if args.fast_orthophoto: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_ply --no-cameras %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: system.run( 'PYTHONPATH=%s %s/bin/opensfm compute_depthmaps %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING( 'Found a valid OpenSfM reconstruction file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to bundler before if not io.file_exists(tree.opensfm_bundle_list) or rerun_cell: # convert back to bundler's format system.run( 'PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid Bundler file in: %s' % tree.opensfm_reconstruction) if args.use_pmvs: # check if reconstruction was exported to pmvs before if not io.file_exists(tree.pmvs_visdat) or rerun_cell: # run PMVS converter system.run('PYTHONPATH=%s %s/bin/export_pmvs %s --output %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, tree.pmvs)) else: log.ODM_WARNING('Found a valid CMVS file in: %s' % tree.pmvs_visdat) if reconstruction.georef: system.run( 'PYTHONPATH=%s %s/bin/opensfm export_geocoords %s --transformation --proj \'%s\'' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, reconstruction.georef.projection.srs)) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'OpenSfM') log.ODM_INFO('Running ODM OpenSfM Cell - Finished') return ecto.OK if args.end_with != 'opensfm' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running MVS Texturing Cell') # get inputs args = self.inputs.args tree = self.inputs.tree # define paths and create working directories system.mkdir_p(tree.odm_texturing) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'mvs_texturing') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'mvs_texturing' in args.rerun_from) if not io.file_exists(tree.odm_textured_model_obj) or rerun_cell: log.ODM_DEBUG('Writing MVS Textured file in: %s' % tree.odm_textured_model_obj) # Format arguments to fit Mvs-Texturing app skipGeometricVisibilityTest = "" skipGlobalSeamLeveling = "" skipLocalSeamLeveling = "" skipHoleFilling = "" keepUnseenFaces = "" if (self.params.skip_vis_test): skipGeometricVisibilityTest = "--skip_geometric_visibility_test" if (self.params.skip_glob_seam_leveling): skipGlobalSeamLeveling = "--skip_global_seam_leveling" if (self.params.skip_loc_seam_leveling): skipLocalSeamLeveling = "--skip_local_seam_leveling" if (self.params.skip_hole_fill): skipHoleFilling = "--skip_hole_filling" if (self.params.keep_unseen_faces): keepUnseenFaces = "--keep_unseen_faces" # mvstex definitions kwargs = { 'bin': context.mvstex_path, 'out_dir': io.join_paths(tree.odm_texturing, "odm_textured_model"), 'pmvs_folder': tree.pmvs_rec_path, 'nvm_file': io.join_paths(tree.pmvs_rec_path, "nvmCams.nvm"), 'model': tree.odm_mesh, 'dataTerm': self.params.data_term, 'outlierRemovalType': self.params.outlier_rem_type, 'skipGeometricVisibilityTest': skipGeometricVisibilityTest, 'skipGlobalSeamLeveling': skipGlobalSeamLeveling, 'skipLocalSeamLeveling': skipLocalSeamLeveling, 'skipHoleFilling': skipHoleFilling, 'keepUnseenFaces': keepUnseenFaces, 'toneMapping': self.params.tone_mapping } if not args.use_pmvs: kwargs['nvm_file'] = io.join_paths(tree.opensfm, "reconstruction.nvm") else: log.ODM_DEBUG('Generating .nvm file from pmvs output: %s' % '{nvm_file}'.format(**kwargs)) # Create .nvm camera file. pmvs2nvmcams.run('{pmvs_folder}'.format(**kwargs), '{nvm_file}'.format(**kwargs)) # run texturing binary system.run('{bin} {nvm_file} {model} {out_dir} ' '-d {dataTerm} -o {outlierRemovalType} ' '-t {toneMapping} ' '{skipGeometricVisibilityTest} ' '{skipGlobalSeamLeveling} ' '{skipLocalSeamLeveling} ' '{skipHoleFilling} ' '{keepUnseenFaces}'.format(**kwargs)) else: log.ODM_WARNING('Found a valid ODM Texture file in: %s' % tree.odm_textured_model_obj) if args.time: system.benchmark(start_time, tree.benchmarking, 'Texturing') log.ODM_INFO('Running ODM Texturing Cell - Finished') return ecto.OK if args.end_with != 'odm_texturing' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running SMVS Cell') # get inputs tree = inputs.tree args = inputs.args reconstruction = inputs.reconstruction photos = reconstruction.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start SMVS') return ecto.QUIT # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'smvs') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'smvs' in args.rerun_from) # check if reconstruction was done before if not io.file_exists(tree.smvs_model) or rerun_cell: # cleanup if a rerun if io.dir_exists(tree.mve_path) and rerun_cell: shutil.rmtree(tree.mve_path) # make bundle directory if not io.file_exists(tree.mve_bundle): system.mkdir_p(tree.mve_path) system.mkdir_p(io.join_paths(tree.mve_path, 'bundle')) io.copy(tree.opensfm_image_list, tree.mve_image_list) io.copy(tree.opensfm_bundle, tree.mve_bundle) # mve makescene wants the output directory # to not exists before executing it (otherwise it # will prompt the user for confirmation) if io.dir_exists(tree.smvs): shutil.rmtree(tree.smvs) # run mve makescene if not io.dir_exists(tree.mve_views): system.run('%s %s %s' % (context.makescene_path, tree.mve_path, tree.smvs)) # config config = [ "-t%s" % self.params.threads, "-a%s" % self.params.alpha, "--max-pixels=%s" % int(self.params.max_pixels), "-o%s" % self.params.output_scale, "--debug-lvl=%s" % ('1' if self.params.verbose else '0'), "%s" % '-S' if self.params.shading else '', "%s" % '-g' if self.params.gamma_srgb and self.params.shading else '', "--force" if rerun_cell else '' ] # run smvs system.run('%s %s %s' % (context.smvs_path, ' '.join(config), tree.smvs)) # find and rename the output file for simplicity smvs_files = glob.glob(os.path.join(tree.smvs, 'smvs-*')) smvs_files.sort(key=os.path.getmtime) # sort by last modified date if len(smvs_files) > 0: old_file = smvs_files[-1] if not (io.rename_file(old_file, tree.smvs_model)): log.ODM_WARNING("File %s does not exist, cannot be renamed. " % old_file) # Filter point_cloud.filter(tree.smvs_model, standard_deviation=args.pc_filter, verbose=args.verbose) else: log.ODM_WARNING("Cannot find a valid point cloud (smvs-XX.ply) in %s. Check the console output for errors." % tree.smvs) else: log.ODM_WARNING('Found a valid SMVS reconstruction file in: %s' % tree.smvs_model) outputs.reconstruction = reconstruction if args.time: system.benchmark(start_time, tree.benchmarking, 'SMVS') log.ODM_INFO('Running ODM SMVS Cell - Finished') return ecto.OK if args.end_with != 'smvs' else ecto.QUIT
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM OpenSfM Cell') # get inputs tree = self.inputs.tree args = self.inputs.args photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos array to start OpenSfM') return ecto.QUIT # create working directories system.mkdir_p(tree.opensfm) system.mkdir_p(tree.pmvs) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'opensfm') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'opensfm' in args.rerun_from) # check if reconstruction was done before if not io.file_exists(tree.opensfm_reconstruction) or rerun_cell: # create file list list_path = io.join_paths(tree.opensfm, 'image_list.txt') with open(list_path, 'w') as fout: for photo in photos: fout.write('%s\n' % photo.path_file) # create config file for OpenSfM config = [ "use_exif_size: %s" % ('no' if not self.params.use_exif_size else 'yes'), "feature_process_size: %s" % self.params.feature_process_size, "feature_min_frames: %s" % self.params.feature_min_frames, "processes: %s" % self.params.processes, "matching_gps_neighbors: %s" % self.params.matching_gps_neighbors ] if args.matcher_distance > 0: config.append("matching_gps_distance: %s" % self.params.matching_gps_distance) # write config file config_filename = io.join_paths(tree.opensfm, 'config.yaml') with open(config_filename, 'w') as fout: fout.write("\n".join(config)) # run OpenSfM reconstruction system.run('PYTHONPATH=%s %s/bin/run_all %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid OpenSfM file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to bundler before if not io.file_exists(tree.opensfm_bundle_list) or rerun_cell: # convert back to bundler's format system.run('PYTHONPATH=%s %s/bin/export_bundler %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm)) else: log.ODM_WARNING('Found a valid Bundler file in: %s' % tree.opensfm_reconstruction) # check if reconstruction was exported to pmvs before if not io.file_exists(tree.pmvs_visdat) or rerun_cell: # run PMVS converter system.run('PYTHONPATH=%s %s/bin/export_pmvs %s --output %s' % (context.pyopencv_path, context.opensfm_path, tree.opensfm, tree.pmvs)) else: log.ODM_WARNING('Found a valid CMVS file in: %s' % tree.pmvs_visdat) if args.time: system.benchmark(start_time, tree.benchmarking, 'OpenSfM') log.ODM_INFO('Running ODM OpenSfM Cell - Finished') return ecto.OK if args.end_with != 'opensfm' else ecto.QUIT
def process(self, args, outputs): outputs['start_time'] = system.now_raw() tree = types.ODM_Tree(args.project_path, args.gcp, args.geo) outputs['tree'] = tree if args.time and io.file_exists(tree.benchmarking): # Delete the previously made file os.remove(tree.benchmarking) with open(tree.benchmarking, 'a') as b: b.write( 'ODM Benchmarking file created %s\nNumber of Cores: %s\n\n' % (system.now(), context.num_cores)) # check if the image filename is supported def valid_image_filename(filename): (pathfn, ext) = os.path.splitext(filename) return ext.lower( ) in context.supported_extensions and pathfn[-5:] != "_mask" # Get supported images from dir def get_images(in_dir): log.ODM_DEBUG(in_dir) entries = os.listdir(in_dir) valid, rejects = [], [] for f in entries: if valid_image_filename(f): valid.append(f) else: rejects.append(f) return valid, rejects def find_mask(photo_path, masks): (pathfn, ext) = os.path.splitext(os.path.basename(photo_path)) k = "{}_mask".format(pathfn) mask = masks.get(k) if mask: # Spaces are not supported due to OpenSfM's mask_list.txt format reqs if not " " in mask: return mask else: log.ODM_WARNING( "Image mask {} has a space. Spaces are currently not supported for image masks." .format(mask)) # get images directory images_dir = tree.dataset_raw # define paths and create working directories system.mkdir_p(tree.odm_georeferencing) log.ODM_INFO('Loading dataset from: %s' % images_dir) # check if we rerun cell or not images_database_file = os.path.join(tree.root_path, 'images.json') if not io.file_exists(images_database_file) or self.rerun(): if not os.path.exists(images_dir): log.ODM_ERROR( "There are no images in %s! Make sure that your project path and dataset name is correct. The current is set to: %s" % (images_dir, args.project_path)) exit(1) files, rejects = get_images(images_dir) if files: # create ODMPhoto list path_files = [os.path.join(images_dir, f) for f in files] # Lookup table for masks masks = {} for r in rejects: (p, ext) = os.path.splitext(r) if p[-5:] == "_mask" and ext.lower( ) in context.supported_extensions: masks[p] = r photos = [] with open(tree.dataset_list, 'w') as dataset_list: log.ODM_INFO("Loading %s images" % len(path_files)) for f in path_files: p = types.ODM_Photo(f) p.set_mask(find_mask(f, masks)) photos += [p] dataset_list.write(photos[-1].filename + '\n') # Check if a geo file is available if tree.odm_geo_file is not None and os.path.exists( tree.odm_geo_file): log.ODM_INFO("Found image geolocation file") gf = GeoFile(tree.odm_geo_file) updated = 0 for p in photos: entry = gf.get_entry(p.filename) if entry: p.update_with_geo_entry(entry) updated += 1 log.ODM_INFO("Updated %s image positions" % updated) # Save image database for faster restart save_images_database(photos, images_database_file) else: log.ODM_ERROR('Not enough supported images in %s' % images_dir) exit(1) else: # We have an images database, just load it photos = load_images_database(images_database_file) log.ODM_INFO('Found %s usable images' % len(photos)) # Create reconstruction object reconstruction = types.ODM_Reconstruction(photos) if tree.odm_georeferencing_gcp and not args.use_exif: reconstruction.georeference_with_gcp( tree.odm_georeferencing_gcp, tree.odm_georeferencing_coords, tree.odm_georeferencing_gcp_utm, tree.odm_georeferencing_model_txt_geo, rerun=self.rerun()) else: reconstruction.georeference_with_gps( tree.dataset_raw, tree.odm_georeferencing_coords, tree.odm_georeferencing_model_txt_geo, rerun=self.rerun()) reconstruction.save_proj_srs( os.path.join(tree.odm_georeferencing, tree.odm_georeferencing_proj)) outputs['reconstruction'] = reconstruction
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Resize Cell') # get inputs args = self.inputs.args tree = self.inputs.tree photos = self.inputs.photos if not photos: log.ODM_ERROR('Not enough photos in photos to resize') return ecto.QUIT if self.params.resize_to <= 0: log.ODM_ERROR('Resize parameter must be greater than 0') return ecto.QUIT # create working directory system.mkdir_p(tree.dataset_resize) log.ODM_DEBUG('Resizing dataset to: %s' % tree.dataset_resize) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'resize') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'resize' in args.rerun_from) # loop over photos if self.params.skip_resize: photos = Pool().map( partial(no_resize, tree.dataset_raw, tree.dataset_resize, rerun_cell), photos ) log.ODM_INFO('Copied %s images' % len(photos)) else: photos = Pool().map( partial(resize, tree.dataset_raw, tree.dataset_resize, self.params.resize_to, rerun_cell), photos ) log.ODM_INFO('Resized %s images' % len(photos)) # append photos to cell output self.outputs.photos = photos if args.time: system.benchmark(start_time, tree.benchmarking, 'Resizing') log.ODM_INFO('Running ODM Resize Cell - Finished') return ecto.OK if args.end_with != 'resize' else ecto.QUIT