Exemple #1
0
def test_groupby_4():
    # now union private data, and apply mechanism after
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        educ_inc = sn.impute(
            sn.clamp(sn.to_float(data[['educ', 'income']]),
                     lower=[0., 0.],
                     upper=[15., 200_000.]))

        partitioned = sn.partition(educ_inc, by=is_male)

        means = {}
        for cat in is_male.categories:
            part = partitioned[cat]
            part = sn.resize(part, number_rows=500)
            part = sn.mean(part)
            means[cat] = part

        union = sn.union(means)
        noised = sn.laplace_mechanism(union, privacy_usage={"epsilon": 1.0})

    # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print(noised.value)
Exemple #2
0
def test_histogram():
    import numpy as np

    # establish data information

    data = np.genfromtxt(TEST_PUMS_PATH, delimiter=',', names=True)
    education_categories = [
        "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
        "14", "15", "16", "17"
    ]

    income = list(data[:]['income'])
    income_edges = list(range(0, 100_000, 10_000))

    print('actual', np.histogram(income, bins=income_edges)[0])

    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)
        income = sn.to_int(data['income'], lower=0, upper=0)
        sex = sn.to_bool(data['sex'], true_label="1")

        income_histogram = sn.dp_histogram(income,
                                           edges=income_edges,
                                           privacy_usage={'epsilon': 1.})

    analysis.release()

    print("Income histogram Geometric DP release:   " +
          str(income_histogram.value))
Exemple #3
0
def test_groupby_3():
    # now union the released output
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        educ_inc = sn.impute(
            sn.clamp(sn.to_float(data[['educ', 'income']]),
                     lower=[0., 0.],
                     upper=[15., 200_000.]))

        partitioned = sn.partition(educ_inc, by=is_male)

        means = {}
        for cat in is_male.categories:
            part = partitioned[cat]
            part = sn.resize(part, number_rows=500)
            part = sn.dp_mean(part, privacy_usage={"epsilon": 1.0})
            # print("mean: ", part.properties)
            means[cat] = part

        union = sn.union(means)

    # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print(union.value)
Exemple #4
0
def test_groupby_c_stab():
    # use the same partition multiple times in union
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        educ_inc = sn.impute(
            sn.clamp(sn.to_float(data[['educ', 'income']]),
                     lower=[0., 0.],
                     upper=[15., 200_000.]))

        partitioned = sn.partition(educ_inc, by=is_male)

        def analyze(data):
            return sn.mean(sn.resize(data, number_rows=500))

        means = {
            True: analyze(partitioned[True]),
            False: analyze(partitioned[False]),
            "duplicate_that_inflates_c_stab": analyze(partitioned[True]),
        }

        union = sn.union(means)
        noised = sn.laplace_mechanism(union, privacy_usage={"epsilon": 1.0})

        # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print(noised.value)
Exemple #5
0
def test_fail_groupby():
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        educ_inc = sn.impute(
            sn.clamp(sn.to_float(data[['educ', 'income']]),
                     lower=[0., 0.],
                     upper=[15., 200_000.]))

        partitioned = sn.partition(educ_inc, by=is_male)

        bounds = {
            "data_lower": [0., 0.],
            "data_upper": [15., 200_000.],
            "data_rows": 500
        }

        union = sn.union({
            True:
            sn.mean(partitioned[True],
                    privacy_usage={"epsilon": 0.1},
                    **bounds),
            False:
            sn.mean(partitioned[False], **bounds),
        })

        sn.laplace_mechanism(union, privacy_usage={"epsilon": 1.0})

        print(analysis.privacy_usage)
Exemple #6
0
def test_multilayer_partition_1():
    # multilayer partition with mechanisms applied inside partitions
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        educ_inc = sn.impute(
            sn.clamp(sn.to_float(data[['educ', 'income']]),
                     lower=[0., 0.],
                     upper=[15., 200_000.]))

        partitioned = sn.partition(educ_inc, by=is_male)

        def analyze(data):
            educ = sn.clamp(sn.to_int(sn.index(data, indices=0),
                                      lower=0,
                                      upper=15),
                            categories=list(range(15)),
                            null_value=-1)
            income = sn.index(data, indices=1)
            repartitioned = sn.partition(income, by=educ)

            inner_count = {}
            inner_means = {}
            for key in [5, 8, 12]:
                educ_level_part = repartitioned[key]

                inner_count[key] = sn.dp_count(educ_level_part,
                                               privacy_usage={"epsilon": 0.4})
                inner_means[key] = sn.dp_mean(educ_level_part,
                                              privacy_usage={"epsilon": 0.6},
                                              data_rows=sn.row_max(
                                                  1, inner_count[key]))

            return sn.union(inner_means,
                            flatten=False), sn.union(inner_count,
                                                     flatten=False)

        means = {}
        counts = {}
        for key in partitioned.partition_keys:
            part_means, part_counts = analyze(partitioned[key])
            means[key] = part_means
            counts[key] = part_counts

        means = sn.union(means, flatten=False)
        counts = sn.union(counts, flatten=False)

        # analysis.plot()
    print("releasing")
    print(len(analysis.components.items()))
    analysis.release()
    print(analysis.privacy_usage)
    print("Counts:")
    print(counts.value)

    print("Means:")
    print(means.value)
Exemple #7
0
def test_map_1():
    # map a count over all dataframe partitions
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        partitioned = sn.partition(data,
                                   by=sn.to_bool(data['sex'], true_label="1"))

        counts = sn.dp_count(partitioned, privacy_usage={"epsilon": 0.5})

        print(counts.value)
        print(analysis.privacy_usage)
Exemple #8
0
def test_map_3():
    # chain multiple maps over an array partition with implicit preprocessing
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        partitioned = sn.partition(sn.to_float(data['age']),
                                   by=sn.to_bool(data['sex'], true_label="1"))

        means = sn.dp_mean(partitioned,
                           privacy_usage={'epsilon': 0.1},
                           data_rows=500,
                           data_lower=0.,
                           data_upper=15.)

        print(means.value)
        print(analysis.privacy_usage)
Exemple #9
0
def test_groupby_1():

    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        partitioned = sn.partition(data[['educ', 'income']], by=is_male)

        counts = {
            cat: sn.dp_count(partitioned[cat], privacy_usage={'epsilon': 0.1})
            for cat in is_male.categories
        }

    # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print({cat: counts[cat].value for cat in counts})
Exemple #10
0
def test_dataframe_partitioning_1():

    # dataframe partition
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        partitioned = sn.partition(data, by=is_male)

        print(
            sn.union({
                key: sn.dp_mean(sn.impute(
                    sn.clamp(sn.to_float(partitioned[key]['income']), 0.,
                             200_000.)),
                                implementation="plug-in",
                                privacy_usage={"epsilon": 0.5})
                for key in partitioned.partition_keys
            }).value)
        print(analysis.privacy_usage)
Exemple #11
0
def test_map_4():
    # chain multiple mapped releases over a partition with implicit preprocessing
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        partitioned = sn.partition(sn.to_float(data['age']),
                                   by=sn.to_bool(data['sex'], true_label="1"))

        counts = sn.row_max(
            1, sn.dp_count(partitioned, privacy_usage={'epsilon': 0.5}))

        means = sn.dp_mean(partitioned,
                           privacy_usage={'epsilon': 0.7},
                           data_rows=counts,
                           data_lower=0.,
                           data_upper=15.)

        print("counts:", counts.value)
        print("means:", means.value)

        print(analysis.privacy_usage)
Exemple #12
0
def test_groupby_2():
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        partitioned = sn.partition(sn.to_float(data[['educ', 'income']]),
                                   by=is_male)

        counts = {
            True:
            sn.dp_count(partitioned[True], privacy_usage={'epsilon': 0.1}),
            False:
            sn.dp_mean(partitioned[False],
                       privacy_usage={'epsilon': 0.1},
                       data_rows=500,
                       data_lower=[0., 0.],
                       data_upper=[15., 200_000.])
        }

    # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print({cat: counts[cat].value for cat in counts})
Exemple #13
0
def test_dp_linear_stats(run=True):
    with sn.Analysis() as analysis:
        dataset_pums = sn.Dataset(path=TEST_PUMS_PATH,
                                  column_names=TEST_PUMS_NAMES)

        age = dataset_pums['age']
        analysis.release()

        num_records = sn.dp_count(age,
                                  privacy_usage={'epsilon': .5},
                                  lower=0,
                                  upper=10000)
        analysis.release()

        print("number of records:", num_records.value)

        vars = sn.to_float(dataset_pums[["age", "income"]])

        covariance = sn.dp_covariance(data=vars,
                                      privacy_usage={'epsilon': .5},
                                      data_lower=[0., 0.],
                                      data_upper=[150., 150000.],
                                      data_rows=num_records)
        print("covariance released")

        num_means = sn.dp_mean(data=vars,
                               privacy_usage={'epsilon': .5},
                               data_lower=[0., 0.],
                               data_upper=[150., 150000.],
                               data_rows=num_records)

        analysis.release()
        print("covariance:\n", covariance.value)
        print("means:\n", num_means.value)

        age = sn.to_float(age)

        age_variance = sn.dp_variance(age,
                                      privacy_usage={'epsilon': .5},
                                      data_lower=0.,
                                      data_upper=150.,
                                      data_rows=num_records)

        analysis.release()

        print("age variance:", age_variance.value)

        # If I clamp, impute, resize, then I can reuse their properties for multiple statistics
        clamped_age = sn.clamp(age, lower=0., upper=100.)
        imputed_age = sn.impute(clamped_age)
        preprocessed_age = sn.resize(imputed_age, number_rows=num_records)

        # properties necessary for mean are statically known
        mean = sn.dp_mean(preprocessed_age, privacy_usage={'epsilon': .5})

        # properties necessary for variance are statically known
        variance = sn.dp_variance(preprocessed_age,
                                  privacy_usage={'epsilon': .5})

        # sum doesn't need n, so I pass the data in before resizing
        age_sum = sn.dp_sum(imputed_age, privacy_usage={'epsilon': .5})

        # mean with lower, upper properties propagated up from prior bounds
        transformed_mean = sn.dp_mean(-(preprocessed_age + 2.),
                                      privacy_usage={'epsilon': .5})

        analysis.release()
        print("age transformed mean:", transformed_mean.value)

        # releases may be pieced together from combinations of smaller components
        custom_mean = sn.laplace_mechanism(sn.mean(preprocessed_age),
                                           privacy_usage={'epsilon': .5})

        custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age),
                                              privacy_usage={'epsilon': .5})

        custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age),
                                              privacy_usage={'epsilon': .5})

        custom_quantile = sn.laplace_mechanism(sn.quantile(preprocessed_age,
                                                           alpha=.5),
                                               privacy_usage={'epsilon': 500})

        income = sn.to_float(dataset_pums['income'])
        income_max = sn.laplace_mechanism(sn.maximum(income,
                                                     data_lower=0.,
                                                     data_upper=1000000.),
                                          privacy_usage={'epsilon': 10})

        # releases may also be postprocessed and reused as arguments to more components
        age_sum + custom_maximum * 23.

        analysis.release()
        print("laplace quantile:", custom_quantile.value)

        age_histogram = sn.dp_histogram(sn.to_int(age, lower=0, upper=100),
                                        edges=list(range(0, 100, 25)),
                                        null_value=150,
                                        privacy_usage={'epsilon': 2.})

        sex_histogram = sn.dp_histogram(sn.to_bool(dataset_pums['sex'],
                                                   true_label="1"),
                                        privacy_usage={'epsilon': 2.})

        education_histogram = sn.dp_histogram(dataset_pums['educ'],
                                              categories=["5", "7", "10"],
                                              null_value="-1",
                                              privacy_usage={'epsilon': 2.})

        analysis.release()

        print("age histogram: ", age_histogram.value)
        print("sex histogram: ", sex_histogram.value)
        print("education histogram: ", education_histogram.value)

    if run:
        analysis.release()

        # get the mean computed when release() was called
        print(mean.value)
        print(variance.value)

    return analysis
Exemple #14
0
def test_everything(run=True):
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        age_int = sn.to_int(data['age'], 0, 150)
        sex = sn.to_bool(data['sex'], "1")
        educ = sn.to_float(data['educ'])
        race = data['race']
        income = sn.to_float(data['income'])
        married = sn.to_bool(data['married'], "1")

        numerics = sn.to_float(data[['age', 'income']])

        # intentionally busted component
        # print("invalid component id ", (sex + "a").component_id)

        # broadcast scalar over 2d, broadcast scalar over 1d, columnar broadcasting, left and right mul
        numerics * 2. + 2. * educ

        # add different values for each column
        numerics + [[1., 2.]]

        # index into first column
        age = sn.index(numerics, indices=0)
        income = sn.index(numerics, mask=[False, True])

        # boolean ops and broadcasting
        mask = sex & married | (~married ^ False) | (age > 50.) | (age_int
                                                                   == 25)

        # numerical clamping
        sn.clamp(numerics, 0., [150., 150_000.])
        sn.clamp(data['educ'],
                 categories=[str(i) for i in range(8, 10)],
                 null_value="-1")

        sn.count(mask)
        sn.covariance(age, income)
        sn.digitize(educ, edges=[1., 3., 10.], null_value=-1)

        # checks for safety against division by zero
        income / 2.
        income / sn.clamp(educ, 5., 20.)

        sn.dp_count(data, privacy_usage={"epsilon": 0.5})
        sn.dp_count(mask, privacy_usage={"epsilon": 0.5})

        sn.dp_histogram(mask, privacy_usage={"epsilon": 0.5})
        age = sn.impute(sn.clamp(age, 0., 150.))
        sn.dp_maximum(age, privacy_usage={"epsilon": 0.5})
        sn.dp_minimum(age, privacy_usage={"epsilon": 0.5})
        sn.dp_median(age, privacy_usage={"epsilon": 0.5})

        age_n = sn.resize(age, number_rows=800)
        sn.dp_mean(age_n, privacy_usage={"epsilon": 0.5})
        sn.dp_raw_moment(age_n, order=3, privacy_usage={"epsilon": 0.5})

        sn.dp_sum(age, privacy_usage={"epsilon": 0.5})
        sn.dp_variance(age_n, privacy_usage={"epsilon": 0.5})

        sn.filter(income, mask)
        race_histogram = sn.histogram(race,
                                      categories=["1", "2", "3"],
                                      null_value="3")
        sn.histogram(income, edges=[0., 10000., 50000.], null_value=-1)

        sn.dp_histogram(married, privacy_usage={"epsilon": 0.5})

        sn.gaussian_mechanism(race_histogram,
                              privacy_usage={
                                  "epsilon": 0.5,
                                  "delta": .000001
                              })
        sn.laplace_mechanism(race_histogram,
                             privacy_usage={
                                 "epsilon": 0.5,
                                 "delta": .000001
                             })

        sn.raw_moment(educ, order=3)

        sn.log(sn.clamp(educ, 0.001, 50.))
        sn.maximum(educ)
        sn.mean(educ)
        sn.minimum(educ)

        educ % 2.
        educ**2.

        sn.quantile(educ, .32)

        sn.resize(educ, number_rows=1200, lower=0., upper=50.)
        sn.resize(race,
                  number_rows=1200,
                  categories=["1", "2"],
                  weights=[1, 2])
        sn.resize(data[["age", "sex"]],
                  1200,
                  categories=[["1", "2"], ["a", "b"]],
                  weights=[1, 2])
        sn.resize(data[["age", "sex"]],
                  1200,
                  categories=[["1", "2"], ["a", "b", "c"]],
                  weights=[[1, 2], [3, 7, 2]])

        sn.sum(educ)
        sn.variance(educ)

    if run:
        analysis.release()

    return analysis
Exemple #15
0
def test_multilayer_analysis(run=True):
    with sn.Analysis() as analysis:
        PUMS = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        age = sn.to_float(PUMS['age'])
        sex = sn.to_bool(PUMS['sex'], true_label="TRUE")

        age_clamped = sn.clamp(age, lower=0., upper=150.)
        age_resized = sn.resize(age_clamped, number_rows=1000)

        race = sn.to_float(PUMS['race'])
        mean_age = sn.dp_mean(data=race,
                              privacy_usage={'epsilon': .65},
                              data_lower=0.,
                              data_upper=100.,
                              data_rows=500)
        analysis.release()

        sex_plus_22 = sn.add(sn.to_float(sex),
                             22.,
                             left_rows=1000,
                             left_lower=0.,
                             left_upper=1.)

        sn.dp_mean(age_resized / 2. + sex_plus_22,
                   privacy_usage={'epsilon': .1},
                   data_lower=mean_age - 5.2,
                   data_upper=102.,
                   data_rows=500) + 5.

        sn.dp_variance(data=sn.to_float(PUMS['educ']),
                       privacy_usage={'epsilon': .15},
                       data_rows=1000,
                       data_lower=0.,
                       data_upper=12.)

        # sn.dp_raw_moment(
        #     sn.to_float(PUMS['married']),
        #     privacy_usage={'epsilon': .15},
        #     data_rows=1000000,
        #     data_lower=0.,
        #     data_upper=12.,
        #     order=3
        # )
        #
        # sn.dp_covariance(
        #     left=sn.to_float(PUMS['age']),
        #     right=sn.to_float(PUMS['married']),
        #     privacy_usage={'epsilon': .15},
        #     left_rows=1000,
        #     right_rows=1000,
        #     left_lower=0.,
        #     left_upper=1.,
        #     right_lower=0.,
        #     right_upper=1.
        # )

    if run:
        analysis.release()

    return analysis
Exemple #16
0
def generate_bools():
    private_data = [[True, True], [True, False], [False, True], [False, False]]

    dataset = sn.literal(value=private_data, value_public=False)
    typed = sn.to_bool(dataset, true_label=True)
    return sn.resize(typed, number_columns=2, categories=[True, False])