Exemple #1
0
def rank_alignment(embeds1,
                   embeds2,
                   mapping,
                   top_k,
                   threads_num,
                   metric='inner',
                   normalize=False,
                   csls_k=0,
                   accurate=True):
    t = time.time()
    if mapping is None:
        mr_12, mrr_12, hits_12, hits_12_list = greedy_alignment(
            embeds1, embeds2, top_k, threads_num, metric, normalize, csls_k,
            accurate)
    else:
        test_embeds1_mapped = np.matmul(embeds1, mapping)
        mr_12, mrr_12, hits_12, hits_12_list = greedy_alignment(
            test_embeds1_mapped, embeds2, top_k, threads_num, metric,
            normalize, csls_k, accurate)

    cost = time.time() - t
    rank_candidates_num = len(hits_12_list)
    if accurate:
        print(
            "alignment results: hits@{} = {}, mr = {:.4f}, mrr = {:.4f}, rank_candidates: {}, time = {:.3f} s. "
            .format(top_k, hits_12, mr_12, mrr_12, rank_candidates_num, cost))
    return mr_12, mrr_12, hits_12, hits_12_list
Exemple #2
0
def valid(embeds1, embeds2, mapping, top_k, threads_num, metric='inner', normalize=False, csls_k=0, accurate=False):
    if mapping is None:
        _, hits1_12, mr_12, mrr_12 = greedy_alignment(embeds1, embeds2, top_k, threads_num,
                                                      metric, normalize, csls_k, accurate)
    else:
        test_embeds1_mapped = np.matmul(embeds1, mapping)
        _, hits1_12, mr_12, mrr_12 = greedy_alignment(test_embeds1_mapped, embeds2, top_k, threads_num,
                                                      metric, normalize, csls_k, accurate)
    return hits1_12, mrr_12
Exemple #3
0
def rank_alignment_bidirection(embeds1,
                               embeds2,
                               mapping,
                               top_k,
                               threads_num,
                               metric='inner',
                               normalize=False,
                               csls_k=0,
                               accurate=True):
    t = time.time()
    if mapping is None:
        mr_12, mrr_12, hits_12, hits_12_list = greedy_alignment(
            embeds1, embeds2, top_k, threads_num, metric, normalize, csls_k,
            accurate)

        mr_21, mrr_21, hits_21, hits_21_list = greedy_alignment(
            embeds2, embeds1, top_k, threads_num, metric, normalize, csls_k,
            accurate)
    else:
        test_embeds1_mapped = np.matmul(embeds1, mapping)
        mr_12, mrr_12, hits_12, hits_12_list = greedy_alignment(
            test_embeds1_mapped, embeds2, top_k, threads_num, metric,
            normalize, csls_k, accurate)

        mr_21, mrr_21, hits_21, hits_21_list = greedy_alignment(
            embeds2, test_embeds1_mapped, top_k, threads_num, metric,
            normalize, csls_k, accurate)

    mr = round((mr_12 + mr_12) / 2, 4)
    mrr = round((mrr_12 + mrr_21) / 2, 4)
    hits = ((hits_12 + hits_21) / 2).tolist()
    for i in range(len(hits)):
        hits[i] = round(hits[i], 4)
    hits = np.array(hits)

    cost = time.time() - t
    rank_candidates_num = len(hits_12_list)
    if accurate:
        if csls_k > 0:
            print(
                "alignment results with csls: csls={}, hits@{} = {}, mr = {:.4f}, mrr = {:.4f}, rank_candidates: {}, time = {:.3f} s "
                .format(csls_k, top_k, hits, mr, mrr, rank_candidates_num,
                        cost))
        else:
            print(
                "alignment results: hits@{} = {}, mr = {:.4f}, mrr = {:.4f}, rank_candidates: {}, time = {:.3f} s. "
                .format(top_k, hits, mr, mrr, rank_candidates_num, cost))
    else:
        if csls_k > 0:
            print(
                "quick results with csls: csls={}, hits@{} = {}, time = {:.4f} s "
                .format(csls_k, top_k, hits, cost))
        else:
            print(
                "alignment results: hits@{} = {}, mr = {:.4f}, mrr = {:.4f}, rank_candidates: {}, time = {:.3f} s. "
                .format(top_k, hits, mr, mrr, rank_candidates_num, cost))
    return mr, mrr, hits, hits_12_list, hits_21_list