def RingSubSet(ifs, ofs, exo): for mol in ifs.GetOEGraphMols(): submol = oechem.OEGraphMol() adjustHcount = True if exo: isinring = oechem.OEAtomIsInRing() isexo = oechem.OEIsNonRingAtomDoubleBondedToRing() includeexo = oechem.OEOrAtom(isinring, isexo) oechem.OESubsetMol(submol, mol, includeexo, adjustHcount) else: oechem.OESubsetMol(submol, mol, oechem.OEAtomIsInRing(), adjustHcount) submol.SetTitle(mol.GetTitle() + "_rings") if submol.NumAtoms() != 0: oechem.OEWriteMolecule(ofs, submol)
def get_binding_site(structure, ligand): """ """ partlist = oechem.OEIntArray(structure.GetMaxAtomIdx()) # get all contacts between ligand and assembly contacts = oechem.OEGetNearestNbrs(structure, ligand, 5.0) binding_site_atom_idxs = set(contact.GetBgn().GetIdx() for contact in contacts) # create the partition map for atom in structure.GetAtoms(): if atom.GetIdx() in binding_site_atom_idxs: partlist[atom.GetIdx()] = 1 entitypred = oechem.OEPartPredAtom(partlist) # select the binding site atoms entitypred.SelectPart(1) # create a new molecule for the entity binding_site = oechem.OEGraphMol() oechem.OESubsetMol(binding_site, structure, entitypred, False, False) return binding_site
def AtomPathLength(ifs, ofs, itf, atm1, atm2): for mol in ifs.GetOEGraphMols(): oechem.OETriposAtomNames(mol) a1 = None a2 = None for atm in mol.GetAtoms(): if atm.GetName() == atm1: a1 = atm if atm.GetName() == atm2: a2 = atm if a1 is not None and a2 is not None: break if a1 is None or a2 is None: oechem.OEThrow.Warning( "Failed to find atoms %s and %s in molecule" % (atm1, atm2)) continue pathlen = oechem.OEGetPathLength(a1, a2) if itf.GetBool("-verbose") or not itf.HasString("-o"): print("Path length: %s in %s" % (pathlen, oechem.OEMolToSmiles(mol))) spath = oechem.OEShortestPath(a1, a2) spathmol = oechem.OEGraphMol() adjustHCount = True oechem.OESubsetMol(spathmol, mol, oechem.OEIsAtomMember(spath), adjustHCount) spathsmiles = oechem.OEMolToSmiles(spathmol) if itf.HasString("-o"): oechem.OEWriteMolecule(ofs, spathmol) elif itf.GetBool("-verbose"): print(spathsmiles)
def atom_bond_set_to_mol(frag, oemol, adjust_hcount=False, RGroup=True): from openeye import oechem import warnings fragatompred = oechem.OEIsAtomMember(frag.GetAtoms()) fragbondpred = oechem.OEIsBondMember(frag.GetBonds()) fragment_oemol = oechem.OEMol() adjustHCount = adjust_hcount oechem.OESubsetMol(fragment_oemol, oemol, fragatompred, fragbondpred, adjustHCount, RGroup) oechem.OEAddExplicitHydrogens(fragment_oemol) # sanity check that all atoms are bonded for atom in fragment_oemol.GetAtoms(): if not list(atom.GetBonds()): warnings.warn( "Yikes!!! An atom that is not bonded to any other atom in the fragment. " "You probably ran into a bug. Please report the input molecule to the issue tracker" ) # Perceive stereo and check that defined stereo did not change oechem.OEPerceiveChiral(fragment_oemol) oechem.OE3DToAtomStereo(fragment_oemol) oechem.OE3DToBondStereo(fragment_oemol) return fragment_oemol
def split_molecule_components( molecule: oechem.OEGraphMol) -> List[oechem.OEGraphMol]: """ Split an OpenEye Molecule into its bonded components. Parameters ---------- molecule: oechem.OEGraphMol An OpenEye molecule holding multiple components. Returns ------- : list of oechem.OEGraphMol A list of OpenEye molecules holding the split components. """ # determine bonded components number_of_components, part_list = oechem.OEDetermineComponents(molecule) predicate = oechem.OEPartPredAtom(part_list) # get bonded components components = [] for i in range(number_of_components): predicate.SelectPart(i + 1) component = oechem.OEGraphMol() oechem.OESubsetMol(component, molecule, predicate) components.append(component) return components
def frag_to_smiles(frags, mol): """ Convert fragments (AtomBondSet) to smiles string Parameters ---------- frags mol Returns ------- smiles: list of smiles strings """ smiles = {} for frag in frags: fragatompred = oechem.OEIsAtomMember(frag.GetAtoms()) fragbondpred = oechem.OEIsBondMember(frag.GetBonds()) fragment = oechem.OEGraphMol() adjustHCount = True oechem.OESubsetMol(fragment, mol, fragatompred, fragbondpred, adjustHCount) s = oechem.OECreateIsoSmiString(fragment) if s not in smiles: smiles[s] = [] smiles[s].append(frag) return smiles
def get_scaffold(molecule, adjustHcount=False): """ Takes an openeye.oechem.oemol and returns an openeye.oechem.oemol of the scaffold The scaffold is a molecule where all the atoms that are not in rings, and are not linkers between rings. double bonded atoms exo to a ring are included as ring atoms This function has been completely taken from openeye's extractscaffold.py script https://docs.eyesopen.com/toolkits/python/oechemtk/oechem_examples/oechem_example_extractscaffold.html#section-example-oechem-extractscaffold Parameters ---------- mol : openeye.oechem.oemol entire molecule to get the scaffold of adjustHcount : bool, default=False add/remove hydrogens to satisfy valence of scaffold Returns ------- openeye.oechem.oemol scaffold oemol of the input mol. New oemol. """ def TraverseForRing(visited, atom): visited.add(atom.GetIdx()) for nbor in atom.GetAtoms(): if nbor.GetIdx() not in visited: if nbor.IsInRing(): return True if TraverseForRing(visited, nbor): return True return False def DepthFirstSearchForRing(root, nbor): visited = set() visited.add(root.GetIdx()) return TraverseForRing(visited, nbor) class IsInScaffold(oechem.OEUnaryAtomPred): def __call__(self, atom): if atom.IsInRing(): return True count = 0 for nbor in atom.GetAtoms(): if DepthFirstSearchForRing(atom, nbor): count += 1 return count > 1 dst = oechem.OEMol() pred = IsInScaffold() oechem.OESubsetMol(dst, molecule, pred, adjustHcount) return dst
def search(self, mol0, mol1): mol0 = mol0._struc mol1 = mol1._struc p0 = mol0.CreateCopy() p1 = mol1.CreateCopy() #set atom int type. for mol in ( p0, p1, ): for atom in mol.GetAtoms(): if (atom.IsHydrogen()): atom.SetIntType(1) else: atom.SetIntType(2) #suppress hydrogens before mcs search oechem.OESuppressHydrogens(p0) oechem.OESuppressHydrogens(p1) if (self._is_approximate): mcss = oechem.OEMCSSearch(p1, self._atom_expr, self._bond_expr, oechem.OEMCSType_Approximate) else: mcss = oechem.OEMCSSearch(p1, self._atom_expr, self._bond_expr) #set minimum atom of the mcs mcss.SetMinAtoms(1) #set the function to evalue the mcs search mcss.SetMCSFunc(oechem.OEMCSMaxAtomsCompleteCycles(1.5)) # There could be multiple matches. We select the one with the maximum number of atoms. # If there are more than 1 matches with the same maximum number of atoms, we arbitrarily select the first one. mcs_mol = None max_num = 0 #do the mcs search for match in mcss.Match(p0, True): num_atom = 0 mcs_tmp = oechem.OEMol() oechem.OESubsetMol(mcs_tmp, match, True) oechem.OEFindRingAtomsAndBonds(mcs_tmp) for atom in mcs_tmp.GetAtoms(): if (not atom.IsHydrogen()): num_atom += 1 if (num_atom > max_num): max_num = num_atom mcs_mol = mcs_tmp atom_match0 = [] atom_match1 = [] for matchpair in match.GetAtoms(): atom_match0.append(matchpair.target.GetIdx() + 1) atom_match1.append(matchpair.pattern.GetIdx() + 1) #dump search result to kbase if (mcs_mol): mol0 = struc.OeStruc(mol0) mol1 = struc.OeStruc(mol1) mcs_mol = struc.OeStruc(mcs_mol) return self.deposit_to_kbase(mol0.id(), mol1.id(), atom_match0, atom_match1)
def strip_water_ions(in_system): """ This function remove waters and ions molecules from the input system Parameters: ---------- in_system : oechem.OEMol The bio-molecular system to clean opt: python dictionary The system option Output: ------- clean_system : oechem.OEMol The cleaned system """ # Copy the input system system = in_system.CreateCopy() # Create a bit vector mask bv = oechem.OEBitVector(system.GetMaxAtomIdx()) bv.NegateBits() # Create a Hierarchical View of the protein system hv = oechem.OEHierView( system, oechem.OEAssumption_BondedResidue + oechem.OEAssumption_ResPerceived) # Looping over the system residues for chain in hv.GetChains(): for frag in chain.GetFragments(): for hres in frag.GetResidues(): res = hres.GetOEResidue() # Check if a residue is a mono atomic ion natoms = 0 for at in hres.GetAtoms(): natoms += 1 # Set the atom bit mask off if oechem.OEGetResidueIndex( res) == oechem.OEResidueIndex_HOH or natoms == 1: # Set Bit mask atms = hres.GetAtoms() for at in atms: bv.SetBitOff(at.GetIdx()) # Extract the system without waters or ions pred = oechem.OEAtomIdxSelected(bv) clean_system = oechem.OEMol() oechem.OESubsetMol(clean_system, system, pred) return clean_system
def SmartsPathLength(ifs, ofs, itf, ss1, ss2): for mol in ifs.GetOEGraphMols(): oechem.OEPrepareSearch(mol, ss1) oechem.OEPrepareSearch(mol, ss2) if not (ss1.SingleMatch(mol) and ss2.SingleMatch(mol)): oechem.OEThrow.Warning( "Unable to find SMARTS matches in %s, skipping" % mol.GetTitle()) continue unique = True allminlen = sys.maxsize for match1 in ss1.Match(mol, unique): for match2 in ss2.Match(mol, unique): minlen = sys.maxsize for atom1 in match1.GetTargetAtoms(): for atom2 in match2.GetTargetAtoms(): pathlen = oechem.OEGetPathLength(atom1, atom2) if minlen > pathlen: minlen = pathlen atompairs = [] atompairs.append([atom1, atom2]) elif minlen == pathlen: atompairs.append([atom1, atom2]) if minlen < allminlen: allminlen = minlen allatompairs = atompairs[:] elif minlen == allminlen: allatompairs += atompairs[:] if itf.GetBool("-verbose") or not itf.HasString("-o"): print("Shortest path length: %s in %s" % (allminlen, oechem.OEMolToSmiles(mol))) spathlist = set() for satom1, satom2, in allatompairs: spath = oechem.OEShortestPath(satom1, satom2) spathmol = oechem.OEGraphMol() oechem.OESubsetMol(spathmol, mol, oechem.OEIsAtomMember(spath)) spathsmiles = oechem.OEMolToSmiles(spathmol) if spathsmiles in spathlist: continue spathlist.add(spathsmiles) if itf.HasString("-o"): oechem.OEWriteMolecule(ofs, spathmol) elif itf.GetBool("-verbose"): print(spathsmiles) return
def get_smarts(prefix, atom_idxs): """Get the SMARTS corresponding to a list of atom indices""" offmol = Molecule.from_file(prefix + '.mol2') fix_carboxylate_bond_orders(offmol) if prefix in prefix2pmd_struct: pmd_struct = prefix2pmd_struct[prefix] else: pmd_struct = ParmEd.load_file(prefix + '.prmtop') prefix2pmd_struct[prefix] = pmd_struct oemol = offmol.to_openeye() residues_of_interest = set() atom_indices_of_interest = set() #for atom_idx in atom_idxs: #residues_of_interest.add(pmd_struct.atoms[atom_idx].residue.idx) #atom_indices_of_interest.add(atom_idx) #for neighbor in oemol.GetAtom(atom_idx).GetAtoms(): # atom_indices_of_interest.add(neighbor.GetIdx()) for oeatom, pmd_atom in zip(oemol.GetAtoms(), pmd_struct.atoms): # Delete all non-residue-of-interest atoms #if (pmd_atom.residue.idx in residues_of_interest): # atom_indices_of_interest.add(pmd_atom.idx) # Assign tags to atoms of interest if (oeatom.GetIdx() in atom_idxs): atom_idx = oeatom.GetIdx() map_index = atom_idxs.index(atom_idx) + 1 oeatom.SetMapIdx(map_index) atom_indices_of_interest.add(atom_idx) for neighbor in oeatom.GetAtoms(): atom_indices_of_interest.add(neighbor.GetIdx()) # Make a "Subset" molecule, so that we don't get weird charges # around where we cleave the residues subsetmol = OEChem.OEGraphMol() oepred = OEChem.PyAtomPredicate( lambda x: x.GetIdx() in atom_indices_of_interest) OEChem.OESubsetMol(subsetmol, oemol, oepred) smiles_options = (OEChem.OESMILESFlag_Canonical | OEChem.OESMILESFlag_Isotopes | OEChem.OESMILESFlag_RGroups) # Add the atom and bond stereo flags smiles_options |= OEChem.OESMILESFlag_AtomStereo | OEChem.OESMILESFlag_BondStereo # Add the hydrogen flag smiles_options |= OEChem.OESMILESFlag_Hydrogens smiles_options |= OEChem.OESMILESFlag_AtomMaps smiles = OEChem.OECreateSmiString(subsetmol, smiles_options) return smiles
def GetFragmentCombinations(mol, fraglist, frag_number): fragments = [] fragcombs = GetFragmentAtomBondSetCombinations(mol, fraglist, frag_number) for f in fragcombs: fragatompred = oechem.OEIsAtomMember(f.GetAtoms()) fragbondpred = oechem.OEIsBondMember(f.GetBonds()) fragment = oechem.OEGraphMol() adjustHCount = True oechem.OESubsetMol(fragment, mol, fragatompred, fragbondpred, adjustHCount) fragments.append(fragment) return fragments
def BackBone(ifs, ofs): adjustHCount = True mol = oechem.OEGraphMol() backboneMol = oechem.OEGraphMol() while oechem.OEReadMolecule(ifs, mol): if not oechem.OEHasResidues(mol): oechem.OEPerceiveResidues(mol, oechem.OEPreserveResInfo_All) aiter = mol.GetAtoms(oechem.OEIsBackboneAtom()) member = oechem.OEIsAtomMember(aiter) oechem.OESubsetMol(backboneMol, mol, member, adjustHCount) oechem.OEWriteMolecule(ofs, backboneMol)
def GetFragments(mol, minbonds, maxbonds): from openeye import oegraphsim frags = [] fptype = oegraphsim.OEGetFPType("Tree,ver=2.0.0,size=4096,bonds=%d-%d,atype=AtmNum,btype=Order" % (minbonds, maxbonds)) for abset in oegraphsim.OEGetFPCoverage(mol, fptype, True): fragatompred = oechem.OEIsAtomMember(abset.GetAtoms()) frag = oechem.OEGraphMol() adjustHCount = True oechem.OESubsetMol(frag, mol, fragatompred, adjustHCount) oechem.OEFindRingAtomsAndBonds(frag) frags.append(oechem.OEGraphMol(frag)) return frags
def get_atom_map(tagged_smiles, molecule=None): """ Returns a dictionary that maps tag on SMILES to atom index in molecule. Parameters ---------- tagged_smiles: str index-tagged explicit hydrogen SMILES string molecule: OEMol molecule to generate map for. If None, a new OEMol will be generated from the tagged SMILES, the map will map to this molecule and it will be returned. Returns ------- atom_map: dict a dictionary that maps tag to atom index {tag:idx} molecule: OEMol If a molecule was not provided, the generated molecule will be returned. """ if molecule is None: molecule = openeye.smiles_to_oemol(tagged_smiles) ss = oechem.OESubSearch(tagged_smiles) oechem.OEPrepareSearch(molecule, ss) ss.SetMaxMatches(1) atom_map = {} t1 = time.time() matches = [m for m in ss.Match(molecule)] t2 = time.time() seconds = t2 - t1 logger().info("Substructure search took {} seconds".format(seconds)) if not matches: logger().info("MCSS failed for {}, smiles: {}".format( molecule.GetTitle(), tagged_smiles)) return False for match in matches: for ma in match.GetAtoms(): atom_map[ma.pattern.GetMapIdx()] = ma.target.GetIdx() # sanity check mol = oechem.OEGraphMol() oechem.OESubsetMol(mol, match, True) logger().info("Match SMILES: {}".format(oechem.OEMolToSmiles(mol))) if molecule is None: return molecule, atom_map return atom_map
def SubSetRes(ifs, ofs, chainid, resname, resnum): adjustHCount = True mol = oechem.OEGraphMol() while oechem.OEReadMolecule(ifs, mol): if not oechem.OEHasResidues(mol): oechem.OEPerceiveResidues(mol, oechem.OEPreserveResInfo_All) hv = oechem.OEHierView(mol) res = hv.GetResidue(chainid, resname, resnum) if res.GetOEResidue().GetName() is None: oechem.OEThrow.Fatal("Failed to find residue") atomiter = res.GetAtoms() member = oechem.OEIsAtomMember(atomiter) resmol = oechem.OEGraphMol() oechem.OESubsetMol(resmol, mol, member, adjustHCount) if chainid == " ": resmol.SetTitle("%s %d" % (resname, resnum)) else: resmol.SetTitle("%s %s %d" % (resname, chainid, resnum)) oechem.OEWriteMolecule(ofs, resmol)
def frag_to_smiles(frags, mol): """ Convert fragments (AtomBondSet) to canonical isomeric SMILES string Parameters ---------- frags: list mol: OEMol OESMILESFlag: str Either 'ISOMERIC' or 'DEFAULT'. This flag determines which OE function to use to generate SMILES string Returns ------- smiles: dict of smiles to frag """ smiles = {} for frag in frags: fragatompred = oechem.OEIsAtomMember(frag.GetAtoms()) fragbondpred = oechem.OEIsBondMember(frag.GetBonds()) #fragment = oechem.OEGraphMol() fragment = oechem.OEMol() adjustHCount = True oechem.OESubsetMol(fragment, mol, fragatompred, fragbondpred, adjustHCount) oechem.OEPerceiveChiral(fragment) # sanity check that all atoms are bonded for atom in fragment.GetAtoms(): if not list(atom.GetBonds()): raise Warning("Yikes!!! An atom that is not bonded to any other atom in the fragment. " "You probably ran into a bug. Please report the input molecule to the issue tracker") #s = oechem.OEMolToSmiles(fragment) #s2 = fragmenter.utils.create_mapped_smiles(fragment, tagged=False, explicit_hydrogen=False) s = mol_to_smiles(fragment, mapped=False, explicit_hydrogen=True, isomeric=True) if s not in smiles: smiles[s] = [] smiles[s].append(frag) return smiles
def main(argv=[__name__]): if len(argv) != 3: oechem.OEThrow.Usage("%s <infile> <outfile>" % argv[0]) ifs = oechem.oemolistream() if not ifs.open(argv[1]): oechem.OEThrow.Fatal("Unable to open %s for reading" % argv[1]) ofs = oechem.oemolostream() if not ofs.open(argv[2]): oechem.OEThrow.Fatal("Unable to open %s for writing" % argv[2]) for mol in ifs.GetOEGraphMols(): numparts, partlist = oechem.OEDetermineComponents(mol) pred = oechem.OEPartPredAtom(partlist) for i in range(1, numparts + 1): pred.SelectPart(i) partmol = oechem.OEGraphMol() oechem.OESubsetMol(partmol, mol, pred) oechem.OEWriteMolecule(ofs, partmol)
def around(dist, ls): """ This function select atom not far than the threshold distance from the current selection. The threshold distance is in Angstrom selection can be: mask = '5.0 around ligand' """ # at = system.GetAtom(oechem.OEHasAtomIdx(idx)) # Atom set selection atom_set_around = set() # Create a OE bit vector mask for each atoms bv_around = oechem.OEBitVector(system.GetMaxAtomIdx()) # Set the mask atom for at in system.GetAtoms(): if at.GetIdx() in ls: bv_around.SetBitOn(at.GetIdx()) # Predicate pred = oechem.OEAtomIdxSelected(bv_around) # Create the system molecule based on the atom mask molecules = oechem.OEMol() oechem.OESubsetMol(molecules, system, pred) # Create the Nearest neighbours nn = oechem.OENearestNbrs(system, float(dist)) for nbrs in nn.GetNbrs(molecules): for atom in oechem.OEGetResidueAtoms(nbrs.GetBgn()): if atom.GetIdx() in ls: continue atom_set_around.add(atom.GetIdx()) return atom_set_around
def main(argv=[__name__]): itf = oechem.OEInterface(InterfaceData, argv) exo_dbl_bonds = itf.GetBool("-exo") ifs = oechem.oemolistream() if not ifs.open(itf.GetString("-i")): oechem.OEThrow.Fatal("Unable to open %s for reading" % itf.GetString("-i")) ofs = oechem.oemolostream() if not ofs.open(itf.GetString("-o")): oechem.OEThrow.Fatal("Unable to open %s for writing" % itf.GetString("-o")) for src in ifs.GetOEMols(): dst = oechem.OEMol() pred = IsInScaffold() if exo_dbl_bonds: pred = oechem.OEOrAtom(pred, oechem.OEIsNonRingAtomDoubleBondedToRing()) adjustHcount = True oechem.OESubsetMol(dst, src, pred, adjustHcount) if dst.IsValid(): oechem.OEWriteMolecule(ofs, dst)
#!/usr/bin/env python # (C) 2017 OpenEye Scientific Software Inc. All rights reserved. # # TERMS FOR USE OF SAMPLE CODE The software below ("Sample Code") is # provided to current licensees or subscribers of OpenEye products or # SaaS offerings (each a "Customer"). # Customer is hereby permitted to use, copy, and modify the Sample Code, # subject to these terms. OpenEye claims no rights to Customer's # modifications. Modification of Sample Code is at Customer's sole and # exclusive risk. Sample Code may require Customer to have a then # current license or subscription to the applicable OpenEye offering. # THE SAMPLE CODE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED. OPENEYE DISCLAIMS ALL WARRANTIES, INCLUDING, BUT # NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. In no event shall OpenEye be # liable for any damages or liability in connection with the Sample Code # or its use. # @ <SNIPPET> from openeye import oechem mol = oechem.OEGraphMol() oechem.OESmilesToMol(mol, "c1ccccc1O") frag = oechem.OEGraphMol() oechem.OESubsetMol(frag, mol, oechem.OEIsCarbon()) mol.SetData("just_carbon", frag) justCarbon = mol.GetData("just_carbon") # @ </SNIPPET>
# SaaS offerings (each a "Customer"). # Customer is hereby permitted to use, copy, and modify the Sample Code, # subject to these terms. OpenEye claims no rights to Customer's # modifications. Modification of Sample Code is at Customer's sole and # exclusive risk. Sample Code may require Customer to have a then # current license or subscription to the applicable OpenEye offering. # THE SAMPLE CODE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED. OPENEYE DISCLAIMS ALL WARRANTIES, INCLUDING, BUT # NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. In no event shall OpenEye be # liable for any damages or liability in connection with the Sample Code # or its use. # @ <SNIPPET> from __future__ import print_function from openeye import oechem from openeye import oemedchem mol = oechem.OEGraphMol() oechem.OESmilesToMol(mol, "COc1ccc(cc1)CC(=O)N") for frag in oemedchem.OEGetRingChainFragments(mol): fragatompred = oechem.OEIsAtomMember(frag.GetAtoms()) fragbondpred = oechem.OEIsBondMember(frag.GetBonds()) fragment = oechem.OEGraphMol() adjustHCount = True oechem.OESubsetMol(fragment, mol, fragatompred, fragbondpred, adjustHCount) print(oechem.OEMolToSmiles(fragment)) # @ </SNIPPET>
def get_atom_map(molecule, mapped_smiles, strict=True): """ Map tag in mapped SMILES to atom idx using a substructure search A substructure search finds chemically equivalent matches so if atoms are symmetrical, they can flip. The mapped SMILES used for the pattern is first used to generate a molecule with the map indices, the order is canonicalized and then it is used for the substructure search pattern. This ensures that symmetrical do not flip but there is no guarantee that it won't happen. Parameters ---------- molecule: oechem.OEMOl Must have explicit hydrogen mapped_smiles: str explicit hydrogen SMILES with map indices on every atom Returns ------- atom_map: dict {map_idx:atom_idx} """ # check that smiles has explicit hydrogen and map indices mapped_mol = oechem.OEMol() oechem.OESmilesToMol(mapped_mol, mapped_smiles) if not has_atom_map(mapped_mol): raise ValueError( "Mapped SMILES must have map indices for all atoms and hydrogens") # Check molecule for explicit hydrogen if not has_explicit_hydrogen(molecule) and strict: raise ValueError("Molecule must have explicit hydrogens") # canonical order mapped mol to ensure atom map is always generated in the same order canonical_order_atoms(mapped_mol) aopts = oechem.OEExprOpts_DefaultAtoms bopts = oechem.OEExprOpts_DefaultBonds ss = oechem.OESubSearch(mapped_mol, aopts, bopts) oechem.OEPrepareSearch(molecule, ss) ss.SetMaxMatches(1) atom_map = {} matches = [m for m in ss.Match(molecule)] if not matches: raise RuntimeError("MCSS failed for {}, smiles: {}".format( oechem.OEMolToSmiles(molecule), mapped_smiles)) for match in matches: for ma in match.GetAtoms(): atom_map[ma.pattern.GetMapIdx()] = ma.target.GetIdx() # sanity check mol = oechem.OEGraphMol() oechem.OESubsetMol(mol, match, True) matched_smiles = mol_to_smiles(mol, isomeric=False, explicit_hydrogen=False, mapped=False) molcopy = oechem.OEMol(molecule) smiles = mol_to_smiles(molcopy, isomeric=False, explicit_hydrogen=False, mapped=False) pattern_smiles = mol_to_smiles(mapped_mol, isomeric=False, explicit_hydrogen=False, mapped=False) if not matched_smiles == smiles == pattern_smiles: raise RuntimeError( "Matched molecule, input molecule and mapped SMILES are not the same " ) return atom_map
def generate_restricted_conformers(receptor, refmol, mol, core_smarts=None): """ Generate and select a conformer of the specified molecule using the reference molecule Parameters ---------- receptor : openeye.oechem.OEGraphMol Receptor (already prepped for docking) for identifying optimal pose refmol : openeye.oechem.OEGraphMol Reference molecule which shares some part in common with the proposed molecule mol : openeye.oechem.OEGraphMol Molecule whose conformers are to be enumerated core_smarts : str, optional, default=None If core_smarts is specified, substructure will be extracted using SMARTS. """ from openeye import oechem, oeomega # DEBUG: For benzotriazoles, truncate refmol core_smarts = 'c1ccc(NC(=O)[C,N]n2nnc3ccccc32)cc1' # prospective core_smarts = 'NC(=O)[C,N]n2nnc3ccccc32' # retrospective # Get core fragment if core_smarts: # Truncate refmol to SMARTS if specified #print(f'Trunctating using SMARTS {refmol_smarts}') ss = oechem.OESubSearch(core_smarts) oechem.OEPrepareSearch(refmol, ss) for match in ss.Match(refmol): core_fragment = oechem.OEGraphMol() oechem.OESubsetMol(core_fragment, match) break #print(f'refmol has {refmol.NumAtoms()} atoms') else: core_fragment = GetCoreFragment(refmol, [mol]) oechem.OESuppressHydrogens(core_fragment) #print(f' Core fragment has {core_fragment.NumAtoms()} heavy atoms') MIN_CORE_ATOMS = 6 if core_fragment.NumAtoms() < MIN_CORE_ATOMS: return None # Create an Omega instance #omegaOpts = oeomega.OEOmegaOptions() omegaOpts = oeomega.OEOmegaOptions(oeomega.OEOmegaSampling_Dense) # Set the fixed reference molecule omegaFixOpts = oeomega.OEConfFixOptions() omegaFixOpts.SetFixMaxMatch(10) # allow multiple MCSS matches omegaFixOpts.SetFixDeleteH(True) # only use heavy atoms omegaFixOpts.SetFixMol(core_fragment) #omegaFixOpts.SetFixSmarts(smarts) omegaFixOpts.SetFixRMS(0.5) atomexpr = oechem.OEExprOpts_Aromaticity | oechem.OEExprOpts_Hybridization bondexpr = oechem.OEExprOpts_BondOrder | oechem.OEExprOpts_Aromaticity omegaFixOpts.SetAtomExpr(atomexpr) omegaFixOpts.SetBondExpr(bondexpr) omegaOpts.SetConfFixOptions(omegaFixOpts) molBuilderOpts = oeomega.OEMolBuilderOptions() molBuilderOpts.SetStrictAtomTypes(False) # don't give up if MMFF types are not found omegaOpts.SetMolBuilderOptions(molBuilderOpts) omegaOpts.SetWarts(False) # expand molecule title omegaOpts.SetStrictStereo(False) # set strict stereochemistry omegaOpts.SetIncludeInput(False) # don't include input omegaOpts.SetMaxConfs(1000) # generate lots of conformers #omegaOpts.SetEnergyWindow(10.0) # allow high energies omega = oeomega.OEOmega(omegaOpts) from openeye import oequacpac if not oequacpac.OEGetReasonableProtomer(mol): print('No reasonable protomer found') return None mol = oechem.OEMol(mol) # multi-conformer molecule ret_code = omega.Build(mol) if (mol.GetDimension() != 3) or (ret_code != oeomega.OEOmegaReturnCode_Success): print(f'Omega failure: {mol.GetDimension()} and {oeomega.OEGetOmegaError(ret_code)}') return None # Extract poses class Pose(object): def __init__(self, conformer): self.conformer = conformer self.clash_score = None self.docking_score = None self.overlap_score = None poses = [ Pose(conf) for conf in mol.GetConfs() ] # Score clashes bump_check = BumpCheck(receptor) for pose in poses: pose.clash_score = bump_check.count(pose.conformer) # Score docking poses from openeye import oedocking score = oedocking.OEScore(oedocking.OEScoreType_Chemgauss4) score.Initialize(receptor) for pose in poses: pose.docking_score = score.ScoreLigand(pose.conformer) # Compute overlap scores from openeye import oeshape overlap_prep = oeshape.OEOverlapPrep() overlap_prep.Prep(refmol) shapeFunc = oeshape.OEExactShapeFunc() shapeFunc.SetupRef(refmol) oeshape_result = oeshape.OEOverlapResults() for pose in poses: tmpmol = oechem.OEGraphMol(pose.conformer) overlap_prep.Prep(tmpmol) shapeFunc.Overlap(tmpmol, oeshape_result) pose.overlap_score = oeshape_result.GetRefTversky() # Filter poses based on top 10% of overlap poses = sorted(poses, key= lambda pose : pose.overlap_score) poses = poses[int(0.9*len(poses)):] # Select the best docking score import numpy as np poses = sorted(poses, key=lambda pose : pose.docking_score) pose = poses[0] mol.SetActive(pose.conformer) oechem.OESetSDData(mol, 'clash_score', str(pose.clash_score)) oechem.OESetSDData(mol, 'docking_score', str(pose.docking_score)) oechem.OESetSDData(mol, 'overlap_score', str(pose.overlap_score)) # Convert to single-conformer molecule mol = oechem.OEGraphMol(mol) return mol
def oesolvate(solute, density=1.0, padding_distance=10.0, distance_between_atoms=2.5, solvents='tip3p', molar_fractions='1.0', geometry='box', close_solvent=True, salt='[Na+], [Cl-]', salt_concentration=0.0, neutralize_solute=True, verbose=False, return_components=False, **kargs): """ This function solvates the passed solute in a cubic box or a sphere by using Packmol. Packmol creates an initial point for molecular dynamics simulations by packing molecule in defined regions of space. For additional info: http://www.ime.unicamp.br/~martinez/packmol/home.shtml The geometry volume is estimated by the using the padding parameter and the solute size. The number of solvent molecules is calculated by using the specified density and volume. Solvent molecules are specified as comma separated smiles strings. The molar fractions of each solvent molecule are specified in a similar fashion. By default if the solute is charged counter ions are added to neutralize it Parameters: ----------- solute: OEMol molecule The solute to solvate density: float The solution density in g/ml padding_distance: float The largest dimension of the solute (along the x, y, or z axis) is determined (in A), and a cubic box of size (largest dimension)+2*padding is used distance_between_atoms: float The minimum distance between atoms in A solvents: python string A comma separated smiles string or keywords for the solvent molecules. Special water models can be selected by using the keywords: tip3p for TIP3P water model geometry molar_fractions: python string A comma separated molar fraction string of the solvent molecules close_solvent: boolean If True solvent molecules will be placed very close to the solute salt: python string A comma separated string of the dissociated salt in solution salt_concentration: float Salt concentration in millimolar neutralize_solute: boolean If True counter-ions will be added to the solution to neutralize the solute verbose: Bool If True verbose mode is enabled return_components: Bool If True the added solvent molecules are also returned as OEMol Return: ------- oe_mol: OEMol The solvated system. If the selected geometry is a box a SD tag with name 'box_vector' is attached the output molecule containing the system box vectors. oe_mol_components: OEMol If the return_components flag is True the added solvent molecules are returned as an additional OEMol """ def BoundingBox(molecule): """ This function calculates the Bounding Box of the passed molecule molecule: OEMol return: bb (numpy array) the calculated bounding box is returned as numpy array: [(xmin,ymin,zmin), (xmax,ymax,zmax)] """ coords = [v for k, v in molecule.GetCoords().items()] np_coords = np.array(coords) min_coord = np_coords.min(axis=0) max_coord = np_coords.max(axis=0) bb = np.array([min_coord, max_coord]) return bb if shutil.which("packmol") is None: raise (IOError("Packmol executable not found")) # Extract solvent smiles strings and mole fractions solvents = [sm.strip() for sm in solvents.split(',')] fractions = [float(mf) for mf in molar_fractions.split(',')] # If the smiles string and mole fractions lists have different lengths raise an error if len(solvents) != len(fractions): raise ValueError( "Selected solvent number and selected molar fraction number mismatch: {} vs {}" .format(len(solvents), len(fractions))) # Remove smiles string with 0.0 mole fraction solvent_smiles = [ solvents[i] for i, v in enumerate(fractions) if fractions[i] ] mol_fractions = [mf for mf in fractions if mf] # Mole fractions are non-negative numbers if any([v < 0.0 for v in mol_fractions]): raise ValueError("Error: Mole fractions are non-negative real numbers") # Mole fractions must sum up to 1.0 if abs(sum(mol_fractions) - 1.0) > 0.001: oechem.OEThrow.Error("Error: Mole fractions do not sum up to 1.0") if geometry not in ['box', 'sphere']: raise ValueError( "Error geometry: the supported geometries are box and sphere not {}" .format(geometry)) # Set Units density = density * unit.grams / unit.milliliter padding_distance = padding_distance * unit.angstrom salt_concentration = salt_concentration * unit.millimolar # Calculate the Solute Bounding Box BB_solute = BoundingBox(solute) # Estimate of the box cube length box_edge = 2.0 * padding_distance + np.max(BB_solute[1] - BB_solute[0]) * unit.angstrom if geometry == 'box': # Box Volume Volume = box_edge**3 if geometry == 'sphere': Volume = (4.0 / 3.0) * 3.14159265 * (0.5 * box_edge)**3 # Omega engine is used to generate conformations omegaOpts = oeomega.OEOmegaOptions() omegaOpts.SetMaxConfs(1) omegaOpts.SetStrictStereo(False) omega = oeomega.OEOmega(omegaOpts) # Create a string code to identify the solute residues. The code ID used is based # on the residue number id, the residue name and the chain id: # id+resname+chainID hv_solute = oechem.OEHierView( solute, oechem.OEAssumption_BondedResidue + oechem.OEAssumption_ResPerceived) solute_resid_list = [] for chain in hv_solute.GetChains(): for frag in chain.GetFragments(): for hres in frag.GetResidues(): oe_res = hres.GetOEResidue() solute_resid_list.append( str(oe_res.GetResidueNumber()) + oe_res.GetName() + chain.GetChainID()) # Solvent component list_names solvent_resid_dic_names = dict() # Neutralize solute ion_sum_wgt_n_ions = 0.0 * unit.grams / unit.mole if neutralize_solute: # Container for the counter-ions oe_ions = [] # Container for the ion smiles strings ions_smiles = [] solute_formal_charge = 0 for at in solute.GetAtoms(): solute_formal_charge += at.GetFormalCharge() if solute_formal_charge > 0: ions_smiles.append("[Cl-]") elif solute_formal_charge < 0: ions_smiles.append("[Na+]") else: pass # Total number of counter-ions to neutralize the solute n_ions = abs(solute_formal_charge) # print("Counter ions to add = {} of {}".format(n_ions, ions_smiles[0])) # Ions if n_ions >= 1: for sm in ions_smiles: mol = oechem.OEMol() if not oechem.OESmilesToMol(mol, sm): raise ValueError( "Error counter ions: SMILES string parsing fails for the string: {}" .format(sm)) # Generate conformer if not omega(mol): raise ValueError( "Error counter ions: Conformer generation fails for the molecule with " "smiles string: {}".format(sm)) oe_ions.append(mol) if sm == '[Na+]': solvent_resid_dic_names[' NA'] = mol else: solvent_resid_dic_names[' CL'] = mol ion_sum_wgt = 0.0 * unit.grams / unit.mole for ion in oe_ions: # Molecular weight ion_sum_wgt += oechem.OECalculateMolecularWeight( ion) * unit.grams / unit.mole ion_sum_wgt_n_ions = ion_sum_wgt * n_ions # Create ions .pdb files ions_smiles_pdbs = [] for i in range(0, len(ions_smiles)): pdb_name = os.path.basename(tempfile.mktemp(suffix='.pdb')) pdb_name = ions_smiles[i] + '_' + pdb_name ions_smiles_pdbs.append(pdb_name) for i in range(0, len(ions_smiles)): ofs = oechem.oemolostream(ions_smiles_pdbs[i]) oechem.OEWriteConstMolecule(ofs, oe_ions[i]) # Add salts to the solution # Solvent smiles string parsing char_set = string.ascii_uppercase salt_sum_wgt_n_salt = 0.0 * unit.grams / unit.mole if salt_concentration > 0.0 * unit.millimolar: salt_smiles = [sm.strip() for sm in salt.split(',')] # Container list of oemol salt molecules generated by using smiles strings oe_salt = [] for sm in salt_smiles: mol_salt = oechem.OEMol() if not oechem.OESmilesToMol(mol_salt, sm): raise ValueError( "Error salt: SMILES string parsing fails for the string: {}" .format(sm)) # Generate conformer if not omega(mol_salt): raise ValueError( "Error salt: Conformer generation fails for the " "molecule with smiles string: {}".format(sm)) # Unique 3 code letter are set as solvent residue names solv_id = ''.join(random.sample(char_set * 3, 3)) # Try to recognize the residue name oechem.OEPerceiveResidues(mol_salt) for atmol in mol_salt.GetAtoms(): res = oechem.OEAtomGetResidue(atmol) if res.GetName() == 'UNL': res.SetName(solv_id) oechem.OEAtomSetResidue(atmol, res) if solv_id not in solvent_resid_dic_names: solvent_resid_dic_names[solv_id] = mol_salt else: if res.GetName() not in solvent_resid_dic_names: solvent_resid_dic_names[res.GetName()] = mol_salt break oe_salt.append(mol_salt) n_salt = int( round(unit.AVOGADRO_CONSTANT_NA * salt_concentration * Volume.in_units_of(unit.liter))) # for i in range(0, len(salt_smiles)): # print("Number of molecules for the salt component {} = {}".format(salt_smiles[i], n_salt)) salt_sum_wgt = 0.0 * unit.grams / unit.mole for salt in oe_salt: # Molecular weight salt_sum_wgt += oechem.OECalculateMolecularWeight( salt) * unit.grams / unit.mole salt_sum_wgt_n_salt = salt_sum_wgt * n_salt # Create salt .pdb files if n_salt >= 1: salt_pdbs = [] for i in range(0, len(salt_smiles)): pdb_name = os.path.basename(tempfile.mktemp(suffix='.pdb')) # pdb_name = salt_smiles[i] + '_' + pdb_name salt_pdbs.append(pdb_name) for i in range(0, len(salt_smiles)): ofs = oechem.oemolostream(salt_pdbs[i]) oechem.OEWriteConstMolecule(ofs, oe_salt[i]) # Container list of oemol solvent molecules generated by using smiles strings oe_solvents = [] for sm in solvent_smiles: if sm == 'tip3p': tip3p_fn = os.path.join(PACKAGE_DIR, 'oeommtools', 'data', 'tip3p.pdb') ifs = oechem.oemolistream(tip3p_fn) mol_sol = oechem.OEMol() if not oechem.OEReadMolecule(ifs, mol_sol): raise IOError( "It was not possible to read the tip3p molecule file") else: mol_sol = oechem.OEMol() if not oechem.OESmilesToMol(mol_sol, sm): raise ValueError( "Error solvent: SMILES string parsing fails for the string: {}" .format(sm)) # Generate conformer if not omega(mol_sol): raise ValueError( "Error solvent: Conformer generation fails for " "the molecule with smiles string: {}".format(sm)) # Unique 3 code letter are set as solvent residue names solv_id = ''.join(random.sample(char_set * 3, 3)) # Try to recognize the residue name oechem.OEPerceiveResidues(mol_sol) for atmol in mol_sol.GetAtoms(): res = oechem.OEAtomGetResidue(atmol) if res.GetName() == 'UNL': res.SetName(solv_id) oechem.OEAtomSetResidue(atmol, res) if solv_id not in solvent_resid_dic_names: solvent_resid_dic_names[solv_id] = mol_sol else: if res.GetName() not in solvent_resid_dic_names: solvent_resid_dic_names[res.GetName()] = mol_sol break oe_solvents.append(mol_sol) # Sum of the solvent molecular weights solvent_sum_wgt_frac = 0.0 * unit.grams / unit.mole for idx in range(0, len(oe_solvents)): # Molecular weight wgt = oechem.OECalculateMolecularWeight( oe_solvents[idx]) * unit.grams / unit.mole solvent_sum_wgt_frac += wgt * mol_fractions[idx] # Solute molecular weight solute_wgt = oechem.OECalculateMolecularWeight( solute) * unit.gram / unit.mole # Estimate of the number of each molecular species present in the solution accordingly # to their molar fraction fi: # # ni = fi*(density*volume*NA - wgt_solute - sum_k(wgt_salt_k*nk) - wgt_ion*n_ion)/sum_j(wgt_nj * fj) # # where ni is the number of molecule of specie i, density the mixture density, volume the # mixture volume, wgt_solute the molecular weight of the solute, wgt_salt_k the molecular # weight of the salt component k, nk the number of molecule of salt component k, wgt_ion # the counter ion molecular weight, n_ions the number of counter ions and wgt_nj the molecular # weight of the molecule specie j with molar fraction fj div = (unit.AVOGADRO_CONSTANT_NA * density * Volume - (solute_wgt + salt_sum_wgt_n_salt + ion_sum_wgt_n_ions)) / solvent_sum_wgt_frac # Solvent number of monomers n_monomers = [int(round(mf * div)) for mf in mol_fractions] if not all([nm > 0 for nm in n_monomers]): raise ValueError( "Error negative number of solvent components: the density could be too low" ) # for i in range(0, len(solvent_smiles)): # print("Number of molecules for the component {} = {}".format(solvent_smiles[i], n_monomers[i])) # Packmol Configuration file setting if close_solvent: header_template = """\n# Mixture\ntolerance {}\nfiletype pdb\noutput {}\nadd_amber_ter\navoid_overlap no""" else: header_template = """\n# Mixture\ntolerance {}\nfiletype pdb\noutput {}\nadd_amber_ter\navoid_overlap yes""" # Templates strings solute_template = """\n\n# Solute\nstructure {}\nnumber 1\nfixed 0. 0. 0. 0. 0. 0.\nresnumbers 1\nend structure""" if geometry == 'box': solvent_template = """\nstructure {}\nnumber {}\ninside box {:0.3f} {:0.3f} {:0.3f} {:0.3f} {:0.3f} {:0.3f}\ \nchain !\nresnumbers 3\nend structure""" if geometry == 'sphere': solvent_template = """\nstructure {}\nnumber {}\ninside sphere {:0.3f} {:0.3f} {:0.3f} {:0.3f}\ \nchain !\nresnumbers 3\nend structure""" # Create solvents .pdb files solvent_pdbs = [] for i in range(0, len(solvent_smiles)): pdb_name = os.path.basename(tempfile.mktemp(suffix='.pdb')) solvent_pdbs.append(pdb_name) for i in range(0, len(solvent_smiles)): ofs = oechem.oemolostream(solvent_pdbs[i]) oechem.OEWriteConstMolecule(ofs, oe_solvents[i]) solute_pdb = 'solute' + '_' + os.path.basename( tempfile.mktemp(suffix='.pdb')) ofs = oechem.oemolostream(solute_pdb) if solute.GetMaxConfIdx() > 1: raise ValueError("Solutes with multiple conformers are not supported") else: oechem.OEWriteConstMolecule(ofs, solute) # Write Packmol header section mixture_pdb = 'mixture' + '_' + os.path.basename( tempfile.mktemp(suffix='.pdb')) body = header_template.format(distance_between_atoms, mixture_pdb) # Write Packmol configuration file solute section body += solute_template.format(solute_pdb) # The solute is centered inside the box xc = (BB_solute[0][0] + BB_solute[1][0]) / 2. yc = (BB_solute[0][1] + BB_solute[1][1]) / 2. zc = (BB_solute[0][2] + BB_solute[1][2]) / 2. # Correct for periodic box conditions to avoid # steric clashes at the box edges pbc_correction = 1.0 * unit.angstrom xmin = xc - ((box_edge - pbc_correction) / 2.) / unit.angstrom xmax = xc + ((box_edge - pbc_correction) / 2.) / unit.angstrom ymin = yc - ((box_edge - pbc_correction) / 2.) / unit.angstrom ymax = yc + ((box_edge - pbc_correction) / 2.) / unit.angstrom zmin = zc - ((box_edge - pbc_correction) / 2.) / unit.angstrom zmax = zc + ((box_edge - pbc_correction) / 2.) / unit.angstrom # Packmol setting for the solvent section body += '\n\n# Solvent' for i in range(0, len(solvent_smiles)): if geometry == 'box': body += solvent_template.format(solvent_pdbs[i], n_monomers[i], xmin, ymin, zmin, xmax, ymax, zmax) if geometry == 'sphere': body += solvent_template.format(solvent_pdbs[i], n_monomers[i], xc, yc, zc, 0.5 * box_edge / unit.angstrom) # Packmol setting for the salt section if salt_concentration > 0.0 * unit.millimolar and n_salt >= 1: body += '\n\n# Salt' for i in range(0, len(salt_smiles)): if geometry == 'box': body += solvent_template.format(salt_pdbs[i], int(round(n_salt)), xmin, ymin, zmin, xmax, ymax, zmax) if geometry == 'sphere': body += solvent_template.format(salt_pdbs[i], int(round(n_salt)), xc, yc, zc, 0.5 * box_edge / unit.angstrom) # Packmol setting for the ions section if neutralize_solute and n_ions >= 1: body += '\n\n# Counter Ions' for i in range(0, len(ions_smiles)): if geometry == 'box': body += solvent_template.format(ions_smiles_pdbs[i], n_ions, xmin, ymin, zmin, xmax, ymax, zmax) if geometry == 'sphere': body += solvent_template.format(ions_smiles_pdbs[i], n_ions, xc, yc, zc, 0.5 * box_edge / unit.angstrom) # Packmol configuration file packmol_filename = os.path.basename(tempfile.mktemp(suffix='.inp')) with open(packmol_filename, 'w') as file_handle: file_handle.write(body) # Call Packmol if not verbose: mute_output = open(os.devnull, 'w') with open(packmol_filename, 'r') as file_handle: subprocess.check_call(['packmol'], stdin=file_handle, stdout=mute_output, stderr=mute_output) else: with open(packmol_filename, 'r') as file_handle: subprocess.check_call(['packmol'], stdin=file_handle) # Read in the Packmol solvated system solvated = oechem.OEMol() if os.path.exists(mixture_pdb + '_FORCED'): os.rename(mixture_pdb + '_FORCED', mixture_pdb) print("Warning: Packing solution is not optimal") ifs = oechem.oemolistream(mixture_pdb) oechem.OEReadMolecule(ifs, solvated) # To avoid to change the user oemol starting solute by reading in # the generated mixture pdb file and loosing molecule info, the # solvent molecules are extracted from the mixture system and # added back to the starting solute # Extract from the solution system the solvent molecules # by checking the previous solute generated ID: id+resname+chainID hv_solvated = oechem.OEHierView( solvated, oechem.OEAssumption_BondedResidue + oechem.OEAssumption_ResPerceived) # This molecule will hold the solvent molecules generated directly from # the omega conformers. This is useful to avoid problems related to read in # the solvent molecules from pdb files and triggering unwanted perceiving actions new_components = oechem.OEMol() bv = oechem.OEBitVector(solvated.GetMaxAtomIdx()) for chain in hv_solvated.GetChains(): for frag in chain.GetFragments(): for hres in frag.GetResidues(): oe_res = hres.GetOEResidue() if str(oe_res.GetResidueNumber()) + oe_res.GetName( ) + chain.GetChainID() not in solute_resid_list: oechem.OEAddMols(new_components, solvent_resid_dic_names[oe_res.GetName()]) atms = hres.GetAtoms() for at in atms: bv.SetBitOn(at.GetIdx()) pred = oechem.OEAtomIdxSelected(bv) components = oechem.OEMol() oechem.OESubsetMol(components, solvated, pred) new_components.SetCoords(components.GetCoords()) # This is necessary otherwise just one big residue is created oechem.OEPerceiveResidues(new_components) # Add the solvent molecules to the solute copy solvated_system = solute.CreateCopy() oechem.OEAddMols(solvated_system, new_components) # Set Title solvated_system.SetTitle(solute.GetTitle()) # Set ions resname to Na+ and Cl- for at in solvated_system.GetAtoms(): res = oechem.OEAtomGetResidue(at) if res.GetName() == ' NA': res.SetName("Na+") oechem.OEAtomSetResidue(atmol, res) elif res.GetName() == ' CL': res.SetName("Cl-") oechem.OEAtomSetResidue(atmol, res) else: pass # Cleaning to_delete = solvent_pdbs + [packmol_filename, solute_pdb, mixture_pdb] if salt_concentration > 0.0 * unit.millimolar and n_salt >= 1: to_delete += salt_pdbs if neutralize_solute and n_ions >= 1: to_delete += ions_smiles_pdbs for fn in to_delete: try: os.remove(fn) except: pass # Calculate the solution total density total_wgt = oechem.OECalculateMolecularWeight( solvated_system) * unit.gram / unit.mole density_mix = (1 / unit.AVOGADRO_CONSTANT_NA) * total_wgt / Volume print("Computed Solution Density = {}".format( density_mix.in_units_of(unit.gram / unit.milliliter))) # Threshold checking ths = 0.1 * unit.gram / unit.milliliter if not abs(density - density_mix.in_units_of(unit.gram / unit.milliliter)) < ths: raise ValueError( "Error: the computed density for the solute {} does not match the selected density {} vs {}" .format(solute.GetTitle(), density_mix, density)) if geometry == 'box': # Define the box vector and attached it as SD tag to the solvated system # with ID tag: 'box_vectors' box_vectors = (Vec3(box_edge / unit.angstrom, 0.0, 0.0), Vec3(0.0, box_edge / unit.angstrom, 0.0), Vec3(0.0, 0.0, box_edge / unit.angstrom)) * unit.angstrom box_vectors = data_utils.encodePyObj(box_vectors) solvated_system.SetData(oechem.OEGetTag('box_vectors'), box_vectors) if return_components: new_components.SetTitle(solute.GetTitle() + '_solvent_comp') return solvated_system, new_components else: return solvated_system
def PrepareReceptor(pdb,padding=4,outpath=""): """ Prepares a receptor from a pdb with a crystalized ligand Padding controls the docking region. If outpath is given, PrepareReceptor will write an openeye binary (oeb) of the receptor structure. This will be faster than rebuilding the receptor every time. """ print("STOP CALLING THIS FUNCTION") exit() com = oechem.OEGraphMol() ifs = oechem.oemolistream() if ifs.open(pdb): oechem.OEReadPDBFile(ifs, com) ifs.close() """ Sorry, this requires some explanation. Openeye wasn't recognizing the previously docked ligand, so I tried to find other ways. The next blocks of code take our system and split it based on its connected components, for which its REQUIRED that our protein only has a single chain. It assumes that the last component is the ligand. It then creates the ligand (lig) and protein (prot) as separate molecules. Next, it finds the minimum and maximum 3D coordinates of the current ligand and produces a box around it with the specified padding. Finally it uses this box to create a 'receptor' object into which ligands can be docked. Only the receptor is returned. Openeye's docking shouldn't be this involved, but I couldn't get it to run the typical 'hybrid' docking without error. """ oechem.OEDetermineConnectivity(com) nparts, connect = oechem.OEDetermineComponents(com) if(nparts != 2): print("ERR in dock_conf::prepareReceptor. PDB doesn't have 2 connected components") exit() ## TODO: What is a good way to catch errors? # Get apo pred = oechem.OEPartPredAtom(connect) pred.SelectPart(nparts) lig = oechem.OEGraphMol() oechem.OESubsetMol(lig, com, pred) print(lig) # Get protein pred = oechem.OEPartPredAtom(connect) pred.SelectPart(1) prot = oechem.OEGraphMol() oechem.OESubsetMol(prot, com, pred) # Get box dimensions by iterating over ligand x_min = y_min = z_min = float('inf') x_max = y_max = z_max = -float('inf') crd = lig.GetCoords() print("CRD", crd) for atm in crd: x,y,z = crd[atm] if x < x_min: x_min = x if y < y_min: y_min = y if z < z_min: z_min = z if x > x_max: x_max = x if y > y_max: y_max = y if z > z_max: z_max = z x_min -= padding y_min -= padding z_min -= padding x_max += padding y_max += padding z_max += padding print(x_min,y_min,z_max, y_max) # Now prepare the receptor receptor = oechem.OEGraphMol() box = oedocking.OEBox() box.Setup(x_max, y_max, z_max, x_min, y_min, z_min) oedocking.OEMakeReceptor(receptor, prot, box) if not outpath == "": oedocking.OEWriteReceptorFile(receptor,f'{outpath}/receptor.oeb') return receptor
def _extract_oe_fragment( molecule: Molecule, atom_indices: Set[int], bond_indices: Set[Tuple[int, int]] ) -> Molecule: from openeye import oechem oe_molecule = molecule.to_openeye() # Restore the map indices as to_openeye does not automatically add them. for atom_index, map_index in molecule.properties["atom_map"].items(): oe_atom = oe_molecule.GetAtom(oechem.OEHasAtomIdx(atom_index)) oe_atom.SetMapIdx(map_index) # Include any Hs bonded to the included atom set so we can retain their map # indices. for map_index in {*atom_indices}: oe_atom = oe_molecule.GetAtom(oechem.OEHasMapIdx(map_index)) for neighbour in oe_atom.GetAtoms(): if ( neighbour.GetAtomicNum() != 1 or neighbour.GetMapIdx() < 1 or neighbour.GetMapIdx() in atom_indices ): continue atom_indices.add(neighbour.GetMapIdx()) bond_indices.add((map_index, neighbour.GetMapIdx())) atom_bond_set = oechem.OEAtomBondSet() for map_index in atom_indices: atom = oe_molecule.GetAtom(oechem.OEHasMapIdx(map_index)) atom_bond_set.AddAtom(atom) for map_index_1, map_index_2 in bond_indices: atom_1 = oe_molecule.GetAtom(oechem.OEHasMapIdx(map_index_1)) atom_2 = oe_molecule.GetAtom(oechem.OEHasMapIdx(map_index_2)) bond = oe_molecule.GetBond(atom_1, atom_2) if not bond: raise ValueError(f"{(map_index_1, map_index_2)} is a disconnected bond") atom_bond_set.AddBond(bond) atom_predicate = oechem.OEIsAtomMember(atom_bond_set.GetAtoms()) bond_predicate = oechem.OEIsBondMember(atom_bond_set.GetBonds()) fragment = oechem.OEMol() oechem.OESubsetMol(fragment, oe_molecule, atom_predicate, bond_predicate, True) oechem.OEAddExplicitHydrogens(fragment) oechem.OEPerceiveChiral(fragment) # Always restore map? # if restore_maps: # In some cases (symmetric molecules) this changes the atom map so skip it # restore_atom_map(fragment) # atom map should be restored for combinatorial fragmentation # Perceive stereo and check that defined stereo did not change oechem.OEPerceiveChiral(fragment) oechem.OE3DToAtomStereo(fragment) oechem.OE3DToBondStereo(fragment) return Molecule.from_openeye(fragment, allow_undefined_stereo=True)
pattern = oechem.OEGraphMol() target = oechem.OEGraphMol() oechem.OESmilesToMol(pattern, "c1(cc(nc2c1C(CCC2)Cl)CCl)O") oechem.OESmilesToMol(target, "c1(c2c(nc(n1)CF)COC=C2)N") # @ <SNIPPET-EXPR> atomexpr = oechem.OEExprOpts_DefaultAtoms bondexpr = oechem.OEExprOpts_DefaultBonds # @ </SNIPPET-EXPR> patternQ = oechem.OEQMol(pattern) # generate query with atom and bond expression options # @ <SNIPPET-BUILDEXPR> patternQ.BuildExpressions(atomexpr, bondexpr) # @ </SNIPPET-BUILDEXPR> mcss = oechem.OEMCSSearch(patternQ) unique = True count = 1 # loop over matches for match in mcss.Match(target, unique): print("Match %d:" % count) print("Number of matched atoms: %d" % match.NumAtoms()) print("Number of matched bonds: %d" % match.NumBonds()) # create match subgraph m = oechem.OEGraphMol() oechem.OESubsetMol(m, match, True) print("match smiles = %s" % oechem.OEMolToSmiles(m)) count += 1 # @ </SNIPPET>
# TERMS FOR USE OF SAMPLE CODE The software below ("Sample Code") is # provided to current licensees or subscribers of OpenEye products or # SaaS offerings (each a "Customer"). # Customer is hereby permitted to use, copy, and modify the Sample Code, # subject to these terms. OpenEye claims no rights to Customer's # modifications. Modification of Sample Code is at Customer's sole and # exclusive risk. Sample Code may require Customer to have a then # current license or subscription to the applicable OpenEye offering. # THE SAMPLE CODE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED. OPENEYE DISCLAIMS ALL WARRANTIES, INCLUDING, BUT # NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. In no event shall OpenEye be # liable for any damages or liability in connection with the Sample Code # or its use. # @ <SNIPPET> from __future__ import print_function from openeye import oechem from openeye import oemedchem mol = oechem.OEGraphMol() oechem.OESmilesToMol(mol, "CCOc1ccc(cc1)CC(OC)c2ccccc2CC(=O)N") adjustHCount = True for frag in oemedchem.OEGetBemisMurcko(mol): fragment = oechem.OEGraphMol() oechem.OESubsetMol(fragment, mol, frag, adjustHCount) print(".".join(r.GetName() for r in frag.GetRoles()), oechem.OEMolToSmiles(fragment)) # @ </SNIPPET>
def main(argv=[__name__]): itf = oechem.OEInterface(InterfaceData, argv) # flag on command line indicates uncoloring option or not bUncolor = itf.GetBool("-uncolor") # input structure(s) to transform ifsmols = oechem.oemolistream() if not ifsmols.open(itf.GetString("-i")): oechem.OEThrow.Fatal("Unable to open %s for reading" % itf.GetString("-i")) # save output structure(s) to this file ofs = oechem.oemolostream() if not ofs.open(itf.GetString("-o")): oechem.OEThrow.Fatal("Unable to open %s for writing" % itf.GetString("-o")) if not oechem.OEIsSDDataFormat(ofs.GetFormat()): oechem.OEThrow.Fatal("Unable to open %s for writing" % itf.GetString("-o")) irec = 0 ototal = 0 frag = oechem.OEGraphMol() for mol in ifsmols.GetOEGraphMols(): irec += 1 oechem.OEDeleteEverythingExceptTheFirstLargestComponent(mol) iter = oemedchem.OEGetBemisMurcko(mol) if not iter.IsValid(): name = mol.GetTitle() if not mol.GetTitle(): name = 'Record ' + str(irec) oechem.OEThrow.Warning("%s: no perceived regions" % name) continue for bmregion in iter: # create a fragment from the perceived region oechem.OESubsetMol(frag, mol, bmregion, True) if bUncolor: # ignore 3D stereo parities if (frag.GetDimension() == 3): frag.SetDimension(0) # uncolor the fragment oechem.OEUncolorMol(frag) smi = oechem.OEMolToSmiles(frag) # annotate the input molecule with the role information for role in bmregion.GetRoles(): oechem.OEAddSDData(mol, role.GetName(), smi) ototal += 1 oechem.OEWriteMolecule(ofs, mol) if not irec: oechem.OEThrow.Fatal('No records in input structure file to perceive') if not ototal: oechem.OEThrow.Warning('No annotated structures generated') print( "Input molecules={0:d}, output annotated {1:s}molecules={2:d}".format( irec, ("(uncolored) " if bUncolor else ""), ototal)) return 0