def test_row_eliminate():
    """
    Test elemination of element in U[i, j] by rotating in i-1 and i.
    """
    dim = 3
    u_generator = numpy.random.random((dim, dim)) + 1j * numpy.random.random(
        (dim, dim))
    u_generator = u_generator - numpy.conj(u_generator).T

    # make sure the generator is actually antihermitian
    assert numpy.allclose(-1 * u_generator, numpy.conj(u_generator).T)

    unitary = scipy.linalg.expm(u_generator)

    # eliminate U[2, 0] by rotating in 1, 2
    gmat = givens_matrix_elements(unitary[1, 0], unitary[2, 0], which='right')
    givens_rotate(unitary, gmat, 1, 2, which='row')
    assert numpy.isclose(unitary[2, 0], 0.0)

    # eliminate U[1, 0] by rotating in 0, 1
    gmat = givens_matrix_elements(unitary[0, 0], unitary[1, 0], which='right')
    givens_rotate(unitary, gmat, 0, 1, which='row')
    assert numpy.isclose(unitary[1, 0], 0.0)

    # eliminate U[2, 1] by rotating in 1, 2
    gmat = givens_matrix_elements(unitary[1, 1], unitary[2, 1], which='right')
    givens_rotate(unitary, gmat, 1, 2, which='row')
    assert numpy.isclose(unitary[2, 1], 0.0)
def test_col_eliminate():
    """
    Test elimination by rotating in the column space.  Left multiplication of
    inverse givens
    """
    dim = 3
    u_generator = numpy.random.random((dim, dim)) + 1j * numpy.random.random(
        (dim, dim))
    u_generator = u_generator - numpy.conj(u_generator).T
    # make sure the generator is actually antihermitian
    assert numpy.allclose(-1 * u_generator, numpy.conj(u_generator).T)
    unitary = scipy.linalg.expm(u_generator)

    # eliminate U[1, 0] by rotation in rows [0, 1] and
    # mixing U[1, 0] and U[0, 0]
    unitary_original = unitary.copy()
    gmat = givens_matrix_elements(unitary[0, 0], unitary[1, 0], which='right')
    vec = numpy.array([[unitary[0, 0]], [unitary[1, 0]]])
    fullgmat = create_givens(gmat, 0, 1, 3)
    zeroed_unitary = fullgmat.dot(unitary)

    givens_rotate(unitary, gmat, 0, 1)
    assert numpy.isclose(unitary[1, 0], 0.0)
    assert numpy.allclose(unitary.real, zeroed_unitary.real)
    assert numpy.allclose(unitary.imag, zeroed_unitary.imag)

    # eliminate U[2, 0] by rotating columns [0, 1] and
    # mixing U[2, 0] and U[2, 1].
    unitary = unitary_original.copy()
    gmat = givens_matrix_elements(unitary[2, 0], unitary[2, 1], which='left')
    vec = numpy.array([[unitary[2, 0]], [unitary[2, 1]]])

    assert numpy.isclose((gmat.dot(vec))[0, 0], 0.0)
    assert numpy.isclose((vec.T.dot(gmat.T))[0, 0], 0.0)
    fullgmat = create_givens(gmat, 0, 1, 3)
    zeroed_unitary = unitary.dot(fullgmat.T)

    # because col takes g[0, 0] * col_i + g[0, 1].conj() * col_j -> col_i
    # this is equivalent ot left multiplication by gmat.T
    givens_rotate(unitary, gmat.conj(), 0, 1, which='col')
    assert numpy.isclose(zeroed_unitary[2, 0], 0.0)
    assert numpy.allclose(unitary, zeroed_unitary)
def test_givens_inverse():
    r"""
    The Givens rotation in OpenFermion is defined as

    $$
        \begin{pmatrix}
            \cos(\theta) & -e^{i \varphi} \sin(\theta) \\
            \sin(\theta) &     e^{i \varphi} \cos(\theta)
        \end{pmatrix}.
    $$

    confirm numerically its hermitian conjugate is it's inverse
    """
    a = numpy.random.random() + 1j * numpy.random.random()
    b = numpy.random.random() + 1j * numpy.random.random()
    ab_rotation = givens_matrix_elements(a, b, which='right')

    assert numpy.allclose(ab_rotation.dot(numpy.conj(ab_rotation).T),
                          numpy.eye(2))
    assert numpy.allclose(
        numpy.conj(ab_rotation).T.dot(ab_rotation), numpy.eye(2))
def optimal_givens_decomposition(
        qubits: Sequence[cirq.Qid],
        unitary: numpy.ndarray) -> Iterable[cirq.Operation]:
    r"""
    Implement a circuit that provides the unitary that is generated by
    single-particle fermion generators

    .. math::

        U(v) = exp(log(v)_{p,q}(a_{p}^{\dagger}a_{q} - a_{q}^{\dagger}a_{p})

    This can be used for implementing an exact single-body basis rotation

    Args:
        qubits: Sequence of qubits to apply the operations over.  The qubits
                should be ordered in linear physical order.
        unitary:
    """
    N = unitary.shape[0]
    right_rotations = []
    left_rotations = []
    for i in range(1, N):
        if i % 2 == 1:
            for j in range(0, i):
                # eliminate U[N - j, i - j] by mixing U[N - j, i - j],
                # U[N - j, i - j - 1] by right multiplication
                # of a givens rotation matrix in column [i - j, i - j + 1]
                gmat = givens_matrix_elements(unitary[N - j - 1, i - j - 1],
                                              unitary[N - j - 1,
                                                      i - j - 1 + 1],
                                              which='left')
                right_rotations.append((gmat.T, (i - j - 1, i - j)))
                givens_rotate(unitary,
                              gmat.conj(),
                              i - j - 1,
                              i - j,
                              which='col')
        else:
            for j in range(1, i + 1):
                # elimination of U[N + j - i, j] by mixing U[N + j - i, j] and
                # U[N + j - i - 1, j] by left multiplication
                # of a givens rotation that rotates row space
                # [N + j - i - 1, N + j - i
                gmat = givens_matrix_elements(unitary[N + j - i - 1 - 1,
                                                      j - 1],
                                              unitary[N + j - i - 1, j - 1],
                                              which='right')
                left_rotations.append((gmat, (N + j - i - 2, N + j - i - 1)))
                givens_rotate(unitary,
                              gmat,
                              N + j - i - 2,
                              N + j - i - 1,
                              which='row')

    new_left_rotations = []
    for (left_gmat, (i, j)) in reversed(left_rotations):
        phase_matrix = numpy.diag([unitary[i, i], unitary[j, j]])
        matrix_to_decompose = left_gmat.conj().T.dot(phase_matrix)
        new_givens_matrix = givens_matrix_elements(matrix_to_decompose[1, 0],
                                                   matrix_to_decompose[1, 1],
                                                   which='left')
        new_phase_matrix = matrix_to_decompose.dot(new_givens_matrix.T)

        # check if T_{m,n}^{-1}D  = D T.
        # coverage: ignore
        if not numpy.allclose(new_phase_matrix.dot(new_givens_matrix.conj()),
                              matrix_to_decompose):
            raise GivensTranspositionError("Failed to shift the phase matrix "
                                           "from right to left")
        # coverage: ignore

        unitary[i, i], unitary[j, j] = new_phase_matrix[0,
                                                        0], new_phase_matrix[1,
                                                                             1]
        new_left_rotations.append((new_givens_matrix.conj(), (i, j)))

    phases = numpy.diag(unitary)
    rotations = []
    ordered_rotations = []
    for (gmat, (i, j)) in list(reversed(new_left_rotations)) + list(
            map(lambda x: (x[0].conj().T, x[1]), reversed(right_rotations))):
        ordered_rotations.append((gmat, (i, j)))

        # if this throws the impossible has happened
        # coverage: ignore
        if not numpy.isclose(gmat[0, 0].imag, 0.0):
            raise GivensMatrixError(
                "Givens matrix does not obey our convention that all elements "
                "in the first column are real")
        if not numpy.isclose(gmat[1, 0].imag, 0.0):
            raise GivensMatrixError(
                "Givens matrix does not obey our convention that all elements "
                "in the first column are real")
        # coverage: ignore

        theta = numpy.arcsin(numpy.real(gmat[1, 0]))
        phi = numpy.angle(gmat[1, 1])
        rotations.append((i, j, theta, phi))

    for op in reversed(rotations):
        i, j, theta, phi = cast(Tuple[int, int, float, float], op)
        if not numpy.isclose(phi, 0.0):
            yield cirq.Z(qubits[j])**(phi / numpy.pi)

        yield Ryxxy(-theta).on(qubits[i], qubits[j])

    for idx, phase in enumerate(phases):
        yield cirq.Z(qubits[idx])**(numpy.angle(phase) / numpy.pi)
Exemple #5
0
def gaussian_givens_decomposition(
        qubits: Sequence[cirq.Qid],
        orthogonal_matrix: numpy.ndarray) -> Iterable[cirq.Operation]:
    r"""
    Implement a circuit that provides the unitary that is generated by
    quadratic fermion generators
    .. math::
        U(Q) = exp(-(1/4) [log(Q)]_{j,k} \gamma_j \gamma_k).
    This can be used for implementing an exact fermionic Gaussian unitary from
    any orthogonal 2n x 2n matrix Q.
    Args:
        qubits: Sequence of qubits to apply the operations over.  The qubits
                should be ordered in linear physical order.
        orthogonal_matrix: 2n x 2n orthogonal matrix which defines the linear
                           transformation,
    .. math::
        U(Q)^\dagger \gamma_j U(Q) = \sum_{k=0}^{2n-1} Q_{j,k} \gamma_k.
    """
    N = orthogonal_matrix.shape[0]
    assert N % 2 == 0

    current_matrix = numpy.copy(orthogonal_matrix)
    right_rotations = []
    left_rotations = []
    for i in range(1, N):
        if i % 2 == 1:
            for j in range(0, i):
                # eliminate U[N - j, i - j] by mixing U[N - j, i - j],
                # U[N - j, i - j - 1] by right multiplication
                # of a givens rotation matrix in column [i - j, i - j + 1]
                gmat = givens_matrix_elements(current_matrix[N - j - 1,
                                                             i - j - 1],
                                              current_matrix[N - j - 1,
                                                             i - j - 1 + 1],
                                              which='left')
                right_rotations.append((gmat.T, (i - j - 1, i - j)))
                givens_rotate(current_matrix,
                              gmat.conj(),
                              i - j - 1,
                              i - j,
                              which='col')
        else:
            for j in range(1, i + 1):
                # elimination of U[N + j - i, j] by mixing U[N + j - i, j] and
                # U[N + j - i - 1, j] by left multiplication
                # of a givens rotation that rotates row space
                # [N + j - i - 1, N + j - i
                gmat = givens_matrix_elements(current_matrix[N + j - i - 1 - 1,
                                                             j - 1],
                                              current_matrix[N + j - i - 1,
                                                             j - 1],
                                              which='right')
                left_rotations.append((gmat, (N + j - i - 2, N + j - i - 1)))
                givens_rotate(current_matrix,
                              gmat,
                              N + j - i - 2,
                              N + j - i - 1,
                              which='row')

    new_left_rotations = []
    for (left_gmat, (i, j)) in reversed(left_rotations):
        phase_matrix = numpy.diag([current_matrix[i, i], current_matrix[j, j]])
        matrix_to_decompose = left_gmat.conj().T.dot(phase_matrix)
        new_givens_matrix = givens_matrix_elements(matrix_to_decompose[1, 0],
                                                   matrix_to_decompose[1, 1],
                                                   which='left')
        new_phase_matrix = matrix_to_decompose.dot(new_givens_matrix.T)

        # check if T_{m,n}^{-1}D  = D T.
        # coverage: ignore
        if not numpy.allclose(new_phase_matrix.dot(new_givens_matrix.conj()),
                              matrix_to_decompose):
            raise GivensTranspositionError("Failed to shift the phase matrix "
                                           "from right to left")
        # coverage: ignore

        current_matrix[i, i], current_matrix[j, j] = (new_phase_matrix[0, 0],
                                                      new_phase_matrix[1, 1])
        new_left_rotations.append((new_givens_matrix.conj(), (i, j)))

    phases = numpy.diag(current_matrix)
    rotations = []
    ordered_rotations = []
    for (gmat, (i, j)) in list(reversed(new_left_rotations)) + list(
            map(lambda x: (x[0].conj().T, x[1]), reversed(right_rotations))):
        ordered_rotations.append((gmat, (i, j)))
        """Commented out because orthogonal matrices must be real, so this
        "impossible" happening is impossibly impossible.
        
        # if this throws the impossible has happened
        # coverage: ignore
        if not numpy.isclose(gmat[0, 0].imag, 0.0):
            raise GivensMatrixError(
                "Givens matrix does not obey our convention that all elements "
                "in the first column are real")
        if not numpy.isclose(gmat[1, 0].imag, 0.0):
            raise GivensMatrixError(
                "Givens matrix does not obey our convention that all elements "
                "in the first column are real")
        # coverage: ignore
        """

        theta = numpy.arcsin(numpy.real(gmat[1, 0]))
        rotations.append((i, j, theta))

    for op in reversed(rotations):
        i, j, theta = cast(Tuple[int, int, float], op)
        if not numpy.isclose(theta, 0.0):
            if i % 2 == 0:
                yield cirq.Z(qubits[i // 2])**(theta / numpy.pi)
            else:
                p = (i - 1) // 2
                yield cirq.ops.XXPowGate(exponent=theta / numpy.pi).on(
                    qubits[p], qubits[p + 1])

    # final layer of Pauli gates to implement phases, which must be \pm 1 since
    # orthogonal matrices are real
    # we use the F_2n/stabilizer representation of Pauli operators here
    final_pauli_gate = numpy.zeros(N)
    n = N // 2
    for p in range(n):
        if numpy.isclose(phases[2 * p], phases[2 * p + 1]):
            if numpy.isclose(phases[2 * p], -1.0):
                final_pauli_gate[p + n] += 1
        else:
            final_pauli_gate[p] += 1
            if numpy.isclose(phases[2 * p], 1.0):
                for q in range(p + 1, n):
                    final_pauli_gate[q + n] += 1
            else:
                for q in range(p, n):
                    final_pauli_gate[q + n] += 1

    for p in range(n):
        if final_pauli_gate[p] % 2 == 0 and final_pauli_gate[p + n] % 2 == 1:
            yield cirq.Z(qubits[p])
        elif final_pauli_gate[p] % 2 == 1 and final_pauli_gate[p + n] % 2 == 0:
            yield cirq.X(qubits[p])
        elif final_pauli_gate[p] % 2 == 1 and final_pauli_gate[p + n] % 2 == 1:
            yield cirq.Y(qubits[p])