Exemple #1
0
    def test_error_operator(self):
        FO = FermionOperator

        terms = []
        for i in range(4):
            terms.append(FO(((i, 1), ((i + 1) % 4, 0)), -0.0123370055014))
            terms.append(FO(((i, 1), ((i - 1) % 4, 0)), -0.0123370055014))

            if i in [0, 2]:
                terms.append(
                    normal_ordered(
                        FO(((i + 1, 1), (i, 1), (i + 1, 0), (i, 0)),
                           3.18309886184)))
            if i < 2:
                terms.append(
                    normal_ordered(
                        FO(((i, 1), ((i + 2) % 4, 1), (i, 0),
                            ((i + 2) % 4, 0)), 22.2816920329)))

        self.assertAlmostEqual(
            low_depth_second_order_trotter_error_operator(terms).terms[((3, 1),
                                                                        (2, 1),
                                                                        (1, 1),
                                                                        (2, 0),
                                                                        (1, 0),
                                                                        (0,
                                                                         0))],
            0.75)
    def test_quad_single_term(self):
        op = QuadOperator('p4 p3 p2 p1') + QuadOperator('p3 p2')
        self.assertTrue(op == normal_ordered(op))

        op = QuadOperator('q0 p0') - QuadOperator('p0 q0')
        expected = QuadOperator('', 2.j)
        self.assertTrue(expected == normal_ordered(op, hbar=2.))
 def test_convert_forward_back(self):
     n_qubits = 6
     random_operator = get_fermion_operator(
         random_interaction_operator(n_qubits))
     chemist_operator = chemist_ordered(random_operator)
     normalized_chemist = normal_ordered(chemist_operator)
     difference = normalized_chemist - normal_ordered(random_operator)
     self.assertAlmostEqual(0., difference.induced_norm())
    def test_quad_triple(self):
        op_132 = QuadOperator(((1, 'p'), (3, 'q'), (2, 'q')))
        op_123 = QuadOperator(((1, 'p'), (2, 'q'), (3, 'q')))
        op_321 = QuadOperator(((3, 'q'), (2, 'q'), (1, 'p')))

        self.assertTrue(op_132 == normal_ordered(op_123))
        self.assertTrue(op_132 == normal_ordered(op_132))
        self.assertTrue(op_132 == normal_ordered(op_321))
    def test_fermion_triple(self):
        op_132 = FermionOperator(((1, 1), (3, 0), (2, 0)))
        op_123 = FermionOperator(((1, 1), (2, 0), (3, 0)))
        op_321 = FermionOperator(((3, 0), (2, 0), (1, 1)))

        self.assertTrue(op_132 == normal_ordered(-op_123))
        self.assertTrue(op_132 == normal_ordered(op_132))
        self.assertTrue(op_132 == normal_ordered(op_321))
 def test_inverse_fourier_transform_2d(self):
     grid = Grid(dimensions=2, scale=1.5, length=3)
     spinless = True
     geometry = [('H', (0, 0)), ('H', (0.5, 0.8))]
     h_plane_wave = plane_wave_hamiltonian(grid, geometry, spinless, True)
     h_dual_basis = plane_wave_hamiltonian(grid, geometry, spinless, False)
     h_dual_basis_t = inverse_fourier_transform(h_dual_basis, grid, spinless)
     self.assertEqual(normal_ordered(h_dual_basis_t),
                      normal_ordered(h_plane_wave))
 def test_inverse_fourier_transform_1d(self):
     grid = Grid(dimensions=1, scale=1.5, length=4)
     spinless_set = [True, False]
     geometry = [('H', (0,)), ('H', (0.5,))]
     for spinless in spinless_set:
         h_plane_wave = plane_wave_hamiltonian(grid, geometry, spinless,
                                               True)
         h_dual_basis = plane_wave_hamiltonian(grid, geometry, spinless,
                                               False)
         h_dual_basis_t = inverse_fourier_transform(h_dual_basis, grid,
                                                    spinless)
         self.assertEqual(normal_ordered(h_dual_basis_t),
                          normal_ordered(h_plane_wave))
Exemple #8
0
def test_erpa_eom_ham_lih():
    filename = os.path.join(DATA_DIRECTORY, "H1-Li1_sto-3g_singlet_1.45.hdf5")
    molecule = MolecularData(filename=filename)
    reduced_ham = make_reduced_hamiltonian(
        molecule.get_molecular_hamiltonian(), molecule.n_electrons)
    rha_fermion = get_fermion_operator(reduced_ham)
    permuted_hijkl = np.einsum('ijlk', reduced_ham.two_body_tensor)
    opdm = np.diag([1] * molecule.n_electrons + [0] *
                   (molecule.n_qubits - molecule.n_electrons))
    tpdm = 2 * wedge(opdm, opdm, (1, 1), (1, 1))
    rdms = InteractionRDM(opdm, tpdm)
    dim = 3  # so we don't do the full basis.  This would make the test long
    full_basis = {}  # erpa basis.  A, B basis in RPA language
    cnt = 0
    # start from 1 to make test shorter
    for p, q in product(range(1, dim), repeat=2):
        if p < q:
            full_basis[(p, q)] = cnt
            full_basis[(q, p)] = cnt + dim * (dim - 1) // 2
            cnt += 1
    for rkey in full_basis.keys():
        p, q = rkey
        for ckey in full_basis.keys():
            r, s = ckey
            for sigma, tau in product([0, 1], repeat=2):
                test = erpa_eom_hamiltonian(permuted_hijkl, tpdm,
                                            2 * q + sigma, 2 * p + sigma,
                                            2 * r + tau, 2 * s + tau).real
                qp_op = FermionOperator(
                    ((2 * q + sigma, 1), (2 * p + sigma, 0)))
                rs_op = FermionOperator(((2 * r + tau, 1), (2 * s + tau, 0)))
                erpa_op = normal_ordered(
                    commutator(qp_op, commutator(rha_fermion, rs_op)))
                true = rdms.expectation(get_interaction_operator(erpa_op))
                assert np.isclose(true, test)
 def test_interaction_operator(self):
     for n_orbitals, real, _ in itertools.product((1, 2, 5), (True, False),
                                                  range(5)):
         operator = random_interaction_operator(n_orbitals, real=real)
         normal_ordered_operator = normal_ordered(operator)
         expected_qubit_operator = jordan_wigner(operator)
         actual_qubit_operator = jordan_wigner(normal_ordered_operator)
         assert expected_qubit_operator == actual_qubit_operator
         two_body_tensor = normal_ordered_operator.two_body_tensor
         n_orbitals = len(two_body_tensor)
         ones = numpy.ones((n_orbitals,) * 2)
         triu = numpy.triu(ones, 1)
         shape = (n_orbitals**2, 1)
         mask = (triu.reshape(shape) * ones.reshape(shape[::-1]) +
                 ones.reshape(shape) * triu.reshape(shape[::-1])).reshape(
                     (n_orbitals,) * 4)
         assert numpy.allclose(mask * two_body_tensor,
                               numpy.zeros((n_orbitals,) * 4))
         for term in normal_ordered_operator:
             order = len(term) // 2
             left_term, right_term = term[:order], term[order:]
             assert all(i[1] == 1 for i in left_term)
             assert all(i[1] == 0 for i in right_term)
             assert left_term == tuple(sorted(left_term, reverse=True))
             assert right_term == tuple(sorted(right_term, reverse=True))
    def setUp(self):
        geometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))]
        basis = 'sto-3g'
        multiplicity = 1
        filename = os.path.join(THIS_DIRECTORY, 'data',
                                'H2_sto-3g_singlet_0.7414')
        self.molecule = MolecularData(geometry,
                                      basis,
                                      multiplicity,
                                      filename=filename)
        self.molecule.load()

        # Get molecular Hamiltonian.
        self.molecular_hamiltonian = self.molecule.get_molecular_hamiltonian()

        # Get FCI RDM.
        self.fci_rdm = self.molecule.get_molecular_rdm(use_fci=1)

        # Get explicit coefficients.
        self.nuclear_repulsion = self.molecular_hamiltonian.constant
        self.one_body = self.molecular_hamiltonian.one_body_tensor
        self.two_body = self.molecular_hamiltonian.two_body_tensor

        # Get fermion Hamiltonian.
        self.fermion_hamiltonian = normal_ordered(
            get_fermion_operator(self.molecular_hamiltonian))

        # Get qubit Hamiltonian.
        self.qubit_hamiltonian = jordan_wigner(self.fermion_hamiltonian)

        # Get the sparse matrix.
        self.hamiltonian_matrix = get_sparse_operator(
            self.molecular_hamiltonian)
Exemple #11
0
def double_commutator(op1,
                      op2,
                      op3,
                      indices2=None,
                      indices3=None,
                      is_hopping_operator2=None,
                      is_hopping_operator3=None):
    """Return the double commutator [op1, [op2, op3]].

    Args:
        op1, op2, op3 (FermionOperators or BosonOperators): operators for
            the commutator. All three operators must be of the same type.
        indices2, indices3 (set): The indices op2 and op3 act on.
        is_hopping_operator2 (bool): Whether op2 is a hopping operator.
        is_hopping_operator3 (bool): Whether op3 is a hopping operator.

    Returns:
        The double commutator of the given operators.
    """
    if is_hopping_operator2 and is_hopping_operator3:
        indices2 = set(indices2)
        indices3 = set(indices3)
        # Determine which indices both op2 and op3 act on.
        try:
            intersection, = indices2.intersection(indices3)
        except ValueError:
            return FermionOperator.zero()

        # Remove the intersection from the set of indices, since it will get
        # cancelled out in the final result.
        indices2.remove(intersection)
        indices3.remove(intersection)

        # Find the indices of the final output hopping operator.
        index2, = indices2
        index3, = indices3
        coeff2 = op2.terms[list(op2.terms)[0]]
        coeff3 = op3.terms[list(op3.terms)[0]]
        commutator23 = (FermionOperator(
            ((index2, 1), (index3, 0)), coeff2 * coeff3) + FermionOperator(
                ((index3, 1), (index2, 0)), -coeff2 * coeff3))
    else:
        commutator23 = normal_ordered(commutator(op2, op3))

    return normal_ordered(commutator(op1, commutator23))
    def test_molecular_operator_consistency(self):

        # Initialize H2 InteractionOperator.
        n_qubits = 4
        filename = os.path.join(THIS_DIRECTORY, 'data',
                                'H2_sto-3g_singlet_0.7414')
        molecule = MolecularData(filename=filename)
        molecule_interaction = molecule.get_molecular_hamiltonian()
        molecule_operator = get_fermion_operator(molecule_interaction)

        constant = molecule_interaction.constant
        one_body_coefficients = molecule_interaction.one_body_tensor
        two_body_coefficients = molecule_interaction.two_body_tensor

        # Perform decomposition.
        eigenvalues, one_body_squares, one_body_corrections, trunc_error = (
            low_rank_two_body_decomposition(two_body_coefficients))
        self.assertAlmostEqual(trunc_error, 0.)

        # Build back operator constant and one-body components.
        decomposed_operator = FermionOperator((), constant)
        for p, q in itertools.product(range(n_qubits), repeat=2):
            term = ((p, 1), (q, 0))
            coefficient = (one_body_coefficients[p, q] +
                           one_body_corrections[p, q])
            decomposed_operator += FermionOperator(term, coefficient)

        # Build back two-body component.
        for l in range(one_body_squares.shape[0]):
            one_body_operator = FermionOperator()
            for p, q in itertools.product(range(n_qubits), repeat=2):
                term = ((p, 1), (q, 0))
                coefficient = one_body_squares[l, p, q]
                if abs(eigenvalues[l]) > 1e-6:
                    self.assertTrue(is_hermitian(one_body_squares[l]))
                one_body_operator += FermionOperator(term, coefficient)
            decomposed_operator += eigenvalues[l] * (one_body_operator**2)

        # Test for consistency.
        difference = normal_ordered(decomposed_operator - molecule_operator)
        self.assertAlmostEqual(0., difference.induced_norm())

        # Decompose with slightly negative operator that must use eigen
        molecule = MolecularData(filename=filename)
        molecule.two_body_integrals[0, 0, 0, 0] -= 1

        eigenvalues, one_body_squares, one_body_corrections, trunc_error = (
            low_rank_two_body_decomposition(two_body_coefficients))
        self.assertAlmostEqual(trunc_error, 0.)

        # Check for property errors
        with self.assertRaises(TypeError):
            eigenvalues, one_body_squares, _, trunc_error = (
                low_rank_two_body_decomposition(two_body_coefficients + 0.01j,
                                                truncation_threshold=1.,
                                                final_rank=1))
Exemple #13
0
    def test_sum_of_ordered_terms_equals_full_hamiltonian_odd_side_len(self):
        hamiltonian = normal_ordered(
            fermi_hubbard(5, 5, 1.0, -0.3, periodic=False))
        hamiltonian.compress()

        terms = simulation_ordered_grouped_hubbard_terms_with_info(
            hamiltonian)[0]
        terms_total = sum(terms, FermionOperator.zero())

        self.assertTrue(terms_total == hamiltonian)
Exemple #14
0
    def test_total_length_odd_side_length_full_hubbard(self):
        hamiltonian = normal_ordered(
            fermi_hubbard(5, 5, -1., -0.3, periodic=False))
        hamiltonian.compress()

        # Unpack result into terms, indices they act on, and whether they're
        # hopping operators.
        result = simulation_ordered_grouped_hubbard_terms_with_info(
            hamiltonian)
        terms, _, _ = result

        self.assertEqual(len(terms), 105)
Exemple #15
0
    def get_qubit_expectations(self, qubit_operator):
        """Return expectations of QubitOperator in new QubitOperator.

        Args:
            qubit_operator: QubitOperator instance to be evaluated on
                this InteractionRDM.

        Returns:
            QubitOperator: QubitOperator with coefficients
            corresponding to expectation values of those operators.

        Raises:
            InteractionRDMError: Observable not contained in 1-RDM or 2-RDM.
        """
        from openfermion.transforms.opconversions import reverse_jordan_wigner
        from openfermion.utils.operator_utils import normal_ordered
        qubit_operator_expectations = copy.deepcopy(qubit_operator)
        for qubit_term in qubit_operator_expectations.terms:
            expectation = 0.

            # Map qubits back to fermions.
            reversed_fermion_operators = reverse_jordan_wigner(
                QubitOperator(qubit_term))
            reversed_fermion_operators = normal_ordered(
                reversed_fermion_operators)

            # Loop through fermion terms.
            for fermion_term in reversed_fermion_operators.terms:
                coefficient = reversed_fermion_operators.terms[fermion_term]

                # Handle molecular term.
                if FermionOperator(
                        fermion_term).is_two_body_number_conserving():
                    if not fermion_term:
                        expectation += coefficient
                    else:
                        indices = [operator[0] for operator in fermion_term]
                        if len(indices) == 2:
                            # One-body term
                            indices = tuple(zip(indices, (1, 0)))
                        else:
                            # Two-body term
                            indices = tuple(zip(indices, (1, 1, 0, 0)))
                        rdm_element = self[indices]
                        expectation += rdm_element * coefficient

                # Handle non-molecular terms.
                elif len(fermion_term) > 4:
                    raise InteractionRDMError('Observable not contained '
                                              'in 1-RDM or 2-RDM.')
            qubit_operator_expectations.terms[qubit_term] = expectation
        return qubit_operator_expectations
    def test_split_operator_error_operator_VT_order_against_definition(self):
        hamiltonian = (normal_ordered(fermi_hubbard(3, 3, 1., 4.0)) -
                       2.3 * FermionOperator.identity())
        potential_terms, kinetic_terms = (
            diagonal_coulomb_potential_and_kinetic_terms_as_arrays(hamiltonian)
        )
        potential = sum(potential_terms, FermionOperator.zero())
        kinetic = sum(kinetic_terms, FermionOperator.zero())

        error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='V+T'))

        # V-then-T ordered double commutators: [V, [T, V]] + [T, [T, V]] / 2
        inner_commutator = normal_ordered(commutator(kinetic, potential))
        error_operator_definition = normal_ordered(
            commutator(potential, inner_commutator))
        error_operator_definition += normal_ordered(
            commutator(kinetic, inner_commutator)) / 2.0
        error_operator_definition /= 12.0

        self.assertEqual(error_operator, error_operator_definition)
    def test_fourier_transform(self):
        for length in [2, 3]:
            grid = Grid(dimensions=1, scale=1.5, length=length)
            spinless_set = [True, False]
            geometry = [('H', (0.1,)), ('H', (0.5,))]
            for spinless in spinless_set:
                h_plane_wave = plane_wave_hamiltonian(grid, geometry, spinless,
                                                      True)
                h_dual_basis = plane_wave_hamiltonian(grid, geometry, spinless,
                                                      False)
                h_plane_wave_t = fourier_transform(h_plane_wave, grid, spinless)

                self.assertEqual(normal_ordered(h_plane_wave_t),
                                 normal_ordered(h_dual_basis))

                # Verify that all 3 are Hermitian
                plane_wave_operator = get_sparse_operator(h_plane_wave)
                dual_operator = get_sparse_operator(h_dual_basis)
                plane_wave_t_operator = get_sparse_operator(h_plane_wave_t)
                self.assertTrue(is_hermitian(plane_wave_operator))
                self.assertTrue(is_hermitian(dual_operator))
                self.assertTrue(is_hermitian(plane_wave_t_operator))
Exemple #18
0
    def test_sum_of_ordered_terms_equals_full_side_length_2_hopping_only(self):
        hamiltonian = normal_ordered(
            fermi_hubbard(2, 2, 1., 0.0, periodic=False))
        hamiltonian.compress()

        # Unpack result into terms, indices they act on, and whether they're
        # hopping operators.
        result = simulation_ordered_grouped_hubbard_terms_with_info(
            hamiltonian)
        terms, _, _ = result

        terms_total = sum(terms, FermionOperator.zero())

        self.assertTrue(terms_total == hamiltonian)
    def test_operator_consistency_w_spin(self):

        # Initialize a random InteractionOperator and FermionOperator.
        n_orbitals = 3
        n_qubits = 2 * n_orbitals
        random_interaction = random_interaction_operator(n_orbitals,
                                                         expand_spin=True,
                                                         real=False,
                                                         seed=8)
        random_fermion = get_fermion_operator(random_interaction)

        # Convert to chemist ordered tensor.
        one_body_correction, chemist_tensor = \
            get_chemist_two_body_coefficients(
                random_interaction.two_body_tensor, spin_basis=True)

        # Convert output to FermionOperator.
        output_operator = FermionOperator((), random_interaction.constant)

        # Convert one-body.
        one_body_coefficients = (random_interaction.one_body_tensor +
                                 one_body_correction)
        for p, q in itertools.product(range(n_qubits), repeat=2):
            term = ((p, 1), (q, 0))
            coefficient = one_body_coefficients[p, q]
            output_operator += FermionOperator(term, coefficient)

        # Convert two-body.
        for p, q, r, s in itertools.product(range(n_orbitals), repeat=4):
            coefficient = chemist_tensor[p, q, r, s]

            # Mixed spin.
            term = ((2 * p, 1), (2 * q, 0), (2 * r + 1, 1), (2 * s + 1, 0))
            output_operator += FermionOperator(term, coefficient)

            term = ((2 * p + 1, 1), (2 * q + 1, 0), (2 * r, 1), (2 * s, 0))
            output_operator += FermionOperator(term, coefficient)

            # Same spin.
            term = ((2 * p, 1), (2 * q, 0), (2 * r, 1), (2 * s, 0))
            output_operator += FermionOperator(term, coefficient)

            term = ((2 * p + 1, 1), (2 * q + 1, 0), (2 * r + 1, 1), (2 * s + 1,
                                                                     0))
            output_operator += FermionOperator(term, coefficient)

        # Check that difference is small.
        difference = normal_ordered(random_fermion - output_operator)
        self.assertAlmostEqual(0., difference.induced_norm())
Exemple #20
0
    def test_error_bound_using_info_even_side_length(self):
        # Generate the Hamiltonian.
        hamiltonian = normal_ordered(
            fermi_hubbard(4, 4, 0.5, 0.2, periodic=False))
        hamiltonian.compress()

        # Unpack result into terms, indices they act on, and whether they're
        # hopping operators.
        result = simulation_ordered_grouped_hubbard_terms_with_info(
            hamiltonian)
        terms, indices, is_hopping = result

        self.assertAlmostEqual(
            low_depth_second_order_trotter_error_bound(terms, indices,
                                                       is_hopping), 13.59)
Exemple #21
0
    def test_is_hopping_operator_terms_with_info(self):
        hamiltonian = normal_ordered(
            fermi_hubbard(5, 5, 1., -1., periodic=False))
        hamiltonian.compress()

        # Unpack result into terms, indices they act on, and whether they're
        # hopping operators.
        result = simulation_ordered_grouped_hubbard_terms_with_info(
            hamiltonian)
        terms, _, is_hopping = result

        for i in range(len(terms)):
            single_term = list(terms[i].terms)[0]
            is_hopping_term = not (single_term[1][1]
                                   or single_term[0][0] == single_term[1][0])
            self.assertEqual(is_hopping_term, is_hopping[i])
    def test_strong_interaction_hubbard_VT_order_gives_larger_error(self):
        hamiltonian = normal_ordered(fermi_hubbard(4, 4, 1., 10.0))

        TV_error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='T+V'))
        TV_error_bound = numpy.sum(
            numpy.absolute(list(TV_error_operator.terms.values())))

        VT_error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='V+T'))
        VT_error_bound = numpy.sum(
            numpy.absolute(list(VT_error_operator.terms.values())))

        self.assertGreater(VT_error_bound, TV_error_bound)
    def test_intermediate_interaction_hubbard_TV_order_has_larger_error(self):
        hamiltonian = normal_ordered(fermi_hubbard(4, 4, 1., 4.0))

        TV_error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='T+V'))
        TV_error_bound = numpy.sum(
            numpy.absolute(list(TV_error_operator.terms.values())))

        VT_error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='V+T'))
        VT_error_bound = numpy.sum(
            numpy.absolute(list(VT_error_operator.terms.values())))

        self.assertAlmostEqual(TV_error_bound, 1706.66666666666)
        self.assertAlmostEqual(VT_error_bound, 1365.33333333333)
Exemple #24
0
    def setUp(self):
        # Set up molecule.
        geometry = [('Li', (0., 0., 0.)), ('H', (0., 0., 1.45))]
        basis = 'sto-3g'
        multiplicity = 1
        filename = os.path.join(THIS_DIRECTORY, 'data',
                                'H1-Li1_sto-3g_singlet_1.45')
        self.molecule = MolecularData(geometry,
                                      basis,
                                      multiplicity,
                                      filename=filename)
        self.molecule.load()

        # Get molecular Hamiltonian
        self.molecular_hamiltonian = self.molecule.get_molecular_hamiltonian()
        self.molecular_hamiltonian_no_core = (
            self.molecule.get_molecular_hamiltonian(
                occupied_indices=[0],
                active_indices=range(1, self.molecule.n_orbitals)))

        # Get FCI RDM.
        self.fci_rdm = self.molecule.get_molecular_rdm(use_fci=1)

        # Get explicit coefficients.
        self.nuclear_repulsion = self.molecular_hamiltonian.constant
        self.one_body = self.molecular_hamiltonian.one_body_tensor
        self.two_body = self.molecular_hamiltonian.two_body_tensor

        # Get fermion Hamiltonian.
        self.fermion_hamiltonian = normal_ordered(
            get_fermion_operator(self.molecular_hamiltonian))

        # Get qubit Hamiltonian.
        self.qubit_hamiltonian = jordan_wigner(self.fermion_hamiltonian)

        # Get explicit coefficients.
        self.nuclear_repulsion = self.molecular_hamiltonian.constant
        self.one_body = self.molecular_hamiltonian.one_body_tensor
        self.two_body = self.molecular_hamiltonian.two_body_tensor

        # Get matrix form.
        self.hamiltonian_matrix = get_sparse_operator(
            self.molecular_hamiltonian)
        self.hamiltonian_matrix_no_core = get_sparse_operator(
            self.molecular_hamiltonian_no_core)
Exemple #25
0
    def test_correct_indices_terms_with_info(self):
        hamiltonian = normal_ordered(
            fermi_hubbard(5, 5, 1., -1., periodic=False))
        hamiltonian.compress()

        # Unpack result into terms, indices they act on, and whether they're
        # hopping operators.
        result = simulation_ordered_grouped_hubbard_terms_with_info(
            hamiltonian)
        terms, indices, _ = result

        for i in range(len(terms)):
            term = list(terms[i].terms)
            term_indices = set()
            for single_term in term:
                term_indices = term_indices.union(
                    [single_term[j][0] for j in range(len(single_term))])
            self.assertEqual(term_indices, indices[i])
    def test_hubbard_trotter_error_matches_low_depth_trotter_error(self):
        hamiltonian = normal_ordered(fermi_hubbard(3, 3, 1., 2.3))

        error_operator = (
            fermionic_swap_trotter_error_operator_diagonal_two_body(
                hamiltonian))
        error_operator.compress()

        # Unpack result into terms, indices they act on, and whether
        # they're hopping operators.
        result = simulation_ordered_grouped_low_depth_terms_with_info(
            hamiltonian)
        terms, indices, is_hopping = result

        old_error_operator = low_depth_second_order_trotter_error_operator(
            terms, indices, is_hopping, jellium_only=True)

        old_error_operator -= error_operator
        self.assertEqual(old_error_operator, FermionOperator.zero())
    def test_1d_jellium_wigner_seitz_10_VT_order_gives_larger_error(self):
        hamiltonian = normal_ordered(
            jellium_model(
                hypercube_grid_with_given_wigner_seitz_radius_and_filling(
                    1, 5, wigner_seitz_radius=10., spinless=True),
                spinless=True,
                plane_wave=False))

        TV_error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='T+V'))
        TV_error_bound = numpy.sum(
            numpy.absolute(list(TV_error_operator.terms.values())))

        VT_error_operator = (
            split_operator_trotter_error_operator_diagonal_two_body(
                hamiltonian, order='V+T'))
        VT_error_bound = numpy.sum(
            numpy.absolute(list(VT_error_operator.terms.values())))

        self.assertGreater(VT_error_bound, TV_error_bound)
def diagonal_coulomb_potential_and_kinetic_terms_as_arrays(hamiltonian):
    """Give the potential and kinetic terms of a diagonal Coulomb Hamiltonian
    as arrays.

    Args:
        hamiltonian (FermionOperator): The diagonal Coulomb Hamiltonian to
                                       separate the potential and kinetic terms
                                       for. Identity is arbitrarily chosen
                                       to be part of the potential.

    Returns:
        Tuple of (potential_terms, kinetic_terms). Both elements of the tuple
        are numpy arrays of FermionOperators.
    """
    if not isinstance(hamiltonian, FermionOperator):
        try:
            hamiltonian = normal_ordered(get_fermion_operator(hamiltonian))
        except TypeError:
            raise TypeError('hamiltonian must be either a FermionOperator '
                            'or DiagonalCoulombHamiltonian.')

    potential = FermionOperator.zero()
    kinetic = FermionOperator.zero()

    for term, coeff in hamiltonian.terms.items():
        acted = set(term[i][0] for i in range(len(term)))
        if len(acted) == len(term) / 2:
            potential += FermionOperator(term, coeff)
        else:
            kinetic += FermionOperator(term, coeff)

    potential_terms = numpy.array([
        FermionOperator(term, coeff) for term, coeff in potential.terms.items()
    ])

    kinetic_terms = numpy.array(
        [FermionOperator(term, coeff) for term, coeff in kinetic.terms.items()])

    return (potential_terms, kinetic_terms)
    def test_random_operator_consistency(self):

        # Initialize a random InteractionOperator and FermionOperator.
        n_orbitals = 3
        n_qubits = 2 * n_orbitals
        random_interaction = random_interaction_operator(n_orbitals,
                                                         expand_spin=True,
                                                         real=True,
                                                         seed=8)
        random_fermion = get_fermion_operator(random_interaction)

        # Decompose.
        eigenvalues, one_body_squares, one_body_correction, error = (
            low_rank_two_body_decomposition(
                random_interaction.two_body_tensor))
        self.assertFalse(error)

        # Build back operator constant and one-body components.
        decomposed_operator = FermionOperator((), random_interaction.constant)
        one_body_coefficients = (random_interaction.one_body_tensor +
                                 one_body_correction)
        for p, q in itertools.product(range(n_qubits), repeat=2):
            term = ((p, 1), (q, 0))
            coefficient = one_body_coefficients[p, q]
            decomposed_operator += FermionOperator(term, coefficient)

        # Build back two-body component.
        for l in range(n_orbitals**2):
            one_body_operator = FermionOperator()
            for p, q in itertools.product(range(n_qubits), repeat=2):
                term = ((p, 1), (q, 0))
                coefficient = one_body_squares[l, p, q]
                one_body_operator += FermionOperator(term, coefficient)
            decomposed_operator += eigenvalues[l] * (one_body_operator**2)

        # Test for consistency.
        difference = normal_ordered(decomposed_operator - random_fermion)
        self.assertAlmostEqual(0., difference.induced_norm())
    def test_1D_jellium_trotter_error_matches_low_depth_trotter_error(self):
        hamiltonian = normal_ordered(
            jellium_model(
                hypercube_grid_with_given_wigner_seitz_radius_and_filling(
                    1, 5, wigner_seitz_radius=10., spinless=True),
                spinless=True,
                plane_wave=False))

        error_operator = (
            fermionic_swap_trotter_error_operator_diagonal_two_body(
                hamiltonian))
        error_operator.compress()

        # Unpack result into terms, indices they act on, and whether
        # they're hopping operators.
        result = simulation_ordered_grouped_low_depth_terms_with_info(
            hamiltonian)
        terms, indices, is_hopping = result

        old_error_operator = low_depth_second_order_trotter_error_operator(
            terms, indices, is_hopping, jellium_only=True)

        old_error_operator -= error_operator
        self.assertEqual(old_error_operator, FermionOperator.zero())