Exemple #1
0
    def _get_options_dictionary(self, available_resources):
        """Returns a dictionary of options which will be serialized
        to a yaml file and passed to YANK.

        Parameters
        ----------
        available_resources: ComputeResources
            The resources available to execute on.

        Returns
        -------
        dict of str and Any
            A yaml compatible dictionary of YANK options.
        """

        from openforcefield.utils import quantity_to_string

        platform_name = "CPU"

        if available_resources.number_of_gpus > 0:

            # A platform which runs on GPUs has been requested.
            from openff.evaluator.backends import ComputeResources

            toolkit_enum = ComputeResources.GPUToolkit(
                available_resources.preferred_gpu_toolkit
            )

            # A platform which runs on GPUs has been requested.
            platform_name = (
                "CUDA"
                if toolkit_enum == ComputeResources.GPUToolkit.CUDA
                else ComputeResources.GPUToolkit.OpenCL
            )

        return {
            "verbose": self.verbose,
            "output_dir": ".",
            "temperature": quantity_to_string(
                pint_quantity_to_openmm(self.thermodynamic_state.temperature)
            ),
            "pressure": quantity_to_string(
                pint_quantity_to_openmm(self.thermodynamic_state.pressure)
            ),
            "minimize": True,
            "number_of_equilibration_iterations": self.number_of_equilibration_iterations,
            "default_number_of_iterations": self.number_of_iterations,
            "default_nsteps_per_iteration": self.steps_per_iteration,
            "checkpoint_interval": self.checkpoint_interval,
            "default_timestep": quantity_to_string(
                pint_quantity_to_openmm(self.timestep)
            ),
            "annihilate_electrostatics": True,
            "annihilate_sterics": False,
            "platform": platform_name,
        }
Exemple #2
0
def setup_platform_with_resources(compute_resources, high_precision=False):
    """Creates an OpenMM `Platform` object which requests a set
    amount of compute resources (e.g with a certain number of cpus).

    Parameters
    ----------
    compute_resources: ComputeResources
        The compute resources which describe which platform is most
        appropriate.
    high_precision: bool
        If true, a platform with the highest possible precision (double
        for CUDA and OpenCL, Reference for CPU only) will be returned.
    Returns
    -------
    Platform
        The created platform
    """
    from simtk.openmm import Platform

    # Setup the requested platform:
    if compute_resources.number_of_gpus > 0:

        # TODO: Make sure use mixing precision - CUDA, OpenCL.
        # TODO: Deterministic forces = True

        from openff.evaluator.backends import ComputeResources

        toolkit_enum = ComputeResources.GPUToolkit(
            compute_resources.preferred_gpu_toolkit)

        # A platform which runs on GPUs has been requested.
        platform_name = ("CUDA"
                         if toolkit_enum == ComputeResources.GPUToolkit.CUDA
                         else ComputeResources.GPUToolkit.OpenCL)

        # noinspection PyCallByClass,PyTypeChecker
        platform = Platform.getPlatformByName(platform_name)

        if compute_resources.gpu_device_indices is not None:

            property_platform_name = platform_name

            if toolkit_enum == ComputeResources.GPUToolkit.CUDA:
                property_platform_name = platform_name.lower().capitalize()

            platform.setPropertyDefaultValue(
                property_platform_name + "DeviceIndex",
                compute_resources.gpu_device_indices,
            )

        if high_precision:
            platform.setPropertyDefaultValue("Precision", "double")

        logger.info("Setting up an openmm platform on GPU {}".format(
            compute_resources.gpu_device_indices or 0))

    else:

        if not high_precision:
            # noinspection PyCallByClass,PyTypeChecker
            platform = Platform.getPlatformByName("CPU")
            platform.setPropertyDefaultValue(
                "Threads", str(compute_resources.number_of_threads))
        else:
            # noinspection PyCallByClass,PyTypeChecker
            platform = Platform.getPlatformByName("Reference")

        logger.info("Setting up a simulation with {} threads".format(
            compute_resources.number_of_threads))

    return platform