Exemple #1
0
    def _bootstrap_function(self,
                            **observables: ObservableArray) -> Observable:
        """Re-weights a set of reference observables to the target state.

        Parameters
        -------
        observables
            The observables to reweight, in addition to the reference and target
            reduced potentials.
        """

        reference_reduced_potentials = observables.pop(
            "reference_reduced_potentials")
        target_reduced_potentials = observables.pop(
            "target_reduced_potentials")

        # Construct the mbar object using the specified reference reduced potentials.
        # These may be the input values or values which have been sampled during
        # bootstrapping, hence why it is not precomputed once.
        mbar = pymbar.MBAR(
            reference_reduced_potentials.value.to(
                unit.dimensionless).magnitude.T,
            self.frame_counts,
            verbose=False,
            relative_tolerance=1e-12,
        )

        # Compute the MBAR weights.
        weights = self._compute_weights(mbar, target_reduced_potentials)

        return self._reweight_observables(weights, mbar,
                                          target_reduced_potentials,
                                          **observables)
Exemple #2
0
    def _bootstrap_function(self, **kwargs: ObservableArray):

        return compute_dielectric_constant(
            kwargs.pop("dipole_moments"),
            kwargs.pop("volumes"),
            self.thermodynamic_state.temperature,
            super(AverageDielectricConstant, self)._bootstrap_function,
        )
Exemple #3
0
    def _reweight_observables(
        self,
        weights: ObservableArray,
        mbar: pymbar.MBAR,
        target_reduced_potentials: ObservableArray,
        **observables: ObservableArray,
    ) -> Observable:

        volumes = observables.pop("volumes")
        dipole_moments = observables.pop("dipole_moments")

        dielectric_constant = compute_dielectric_constant(
            dipole_moments,
            volumes,
            self.thermodynamic_state.temperature,
            functools.partial(
                super(ReweightDielectricConstant, self)._reweight_observables,
                weights=weights,
                mbar=mbar,
                target_reduced_potentials=target_reduced_potentials,
            ),
        )

        return dielectric_constant
Exemple #4
0
    def _reweight_observables(
        self,
        weights: ObservableArray,
        mbar: pymbar.MBAR,
        target_reduced_potentials: ObservableArray,
        **observables: ObservableArray,
    ) -> typing.Union[ObservableArray, Observable]:
        """A function which computes the average value of an observable using
        weights computed from MBAR and from a set of component observables.

        Parameters
        ----------
        weights
            The MBAR weights
        observables
            The component observables which may be combined to yield the final
            average observable of interest.
        mbar
            A pre-computed MBAR object encoded information from the reference states.
            This will be used to compute the std error when not bootstrapping.
        target_reduced_potentials
            The reduced potentials at the target state. This will be used to compute
            the std error when not bootstrapping.

        Returns
        -------
            The re-weighted average observable.
        """

        observable = observables.pop("observable")
        assert len(observables) == 0

        return_type = ObservableArray if observable.value.shape[
            1] > 1 else Observable

        weighted_observable = weights * observable

        average_value = weighted_observable.value.sum(axis=0)
        average_gradients = [
            ParameterGradient(key=gradient.key,
                              value=gradient.value.sum(axis=0))
            for gradient in weighted_observable.gradients
        ]

        if return_type == Observable:

            average_value = average_value.item()
            average_gradients = [
                ParameterGradient(key=gradient.key,
                                  value=gradient.value.item())
                for gradient in average_gradients
            ]

        else:

            average_value = average_value.reshape(1, -1)
            average_gradients = [
                ParameterGradient(key=gradient.key,
                                  value=gradient.value.reshape(1, -1))
                for gradient in average_gradients
            ]

        if self.bootstrap_uncertainties is False:

            # Unfortunately we need to re-compute the average observable for now
            # as pymbar does not expose an easier way to compute the average
            # uncertainty.
            observable_dimensions = observable.value.shape[1]
            assert observable_dimensions == 1

            results = mbar.computeExpectations(
                observable.value.T.magnitude,
                target_reduced_potentials.value.T.magnitude,
                state_dependent=True,
            )

            uncertainty = results[1][-1] * observable.value.units
            average_value = average_value.plus_minus(uncertainty)

        return return_type(value=average_value, gradients=average_gradients)