def rosenbrock(u_, p_): """Rosenbrock functions with parameters <code>p = [a, b]</code>""" if not is_symbolic(p_) or p_.size()[0] != 2: raise Exception('illegal parameter p_ (must be SX of size (2,1))') if not is_symbolic(u_): raise Exception('illegal parameter u_ (must be SX)') nu = u_.size()[0] a = p_[0] b = p_[1] ros_fun = 0 for i in range(nu - 1): ros_fun += b * (u_[i + 1] - u_[i]**2)**2 + (a - u_[i])**2 return ros_fun
def distance_squared(self, u): # Function `distance` can be applied to CasADi symbols and # lists of numbers. However, if `u` is a symbol, we need to # use appropriate CasADi functions like cs.sign and cs.norm_2 if fn.is_symbolic(u): # Case I: `u` is a CasADi SX symbol nu = u.size(1) v = u if self.__center is None else u - self.__center elif (isinstance(u, list) and all(isinstance(x, (int, float)) for x in u)) \ or isinstance(u, np.ndarray): # Case II: `u` is an array of numbers or an np.ndarray nu = len(u) if self.__center is None: v = u else: # Note: self.__center is np.ndarray (`u` might be a list) z = self.__center.reshape(nu) u = np.array(u).reshape(nu) v = np.subtract(u, z) else: raise Exception("u is of invalid type") # Compute distance to Ball infinity: # dist^2(u) = norm(v)^2 # + SUM_i [ # min{vi^2, r^2} # - 2*min{vi^2, r*|vi|} # ] # where v = u - xc squared_distance = fn.norm2(v)**2 for i in range(nu): squared_distance += fn.fmin(v[i]**2, self.radius**2) \ - 2.0 * fn.fmin(v[i]**2, self.radius * fn.fabs(v[i])) return squared_distance
def distance_squared(self, u): """Computes the squared distance between a given point `u` and this second-order cone :param u: given point; can be a list of float, a numpy n-dim array (`ndarray`) or a CasADi SX/MX symbol :return: distance from set as a float or a CasADi symbol """ if isinstance(u, cs.SX): warnings.warn( "This function does not accept casadi.SX; use casadi.MX instead" ) if fn.is_symbolic(u): nu = u.size(1) elif (isinstance(u, list) and all(isinstance(x, (int, float)) for x in u)) \ or isinstance(u, np.ndarray): nu = len(u) else: raise Exception("Illegal Argument, `u`") # Partition `u = (x, r)`, where `r` is the last element of `u` a = self.__a x = u[0:nu - 1] r = u[nu - 1] eps = 1e-16 norm_x = fn.norm2(x) # norm of x sq_norm_x = cs.dot(x, x) # squared norm of x gamma = (a * norm_x + r) / (a**2 + 1) fun1 = 0 fun2 = sq_norm_x + r**2 fun3 = sq_norm_x * (1 - gamma * a / norm_x)**2 + (r - gamma)**2 condition0 = norm_x + cs.fabs(r) < eps condition1 = norm_x <= a * r condition2 = a * norm_x <= -r f = cs.if_else( condition0, 0, cs.if_else(condition1, fun1, cs.if_else(condition2, fun2, fun3, True), True), True) return f
def distance_squared(self, u): """Computes the squared distance between a given point `u` and this ball :param u: given point; can be a list of float, a numpy n-dim array (`ndarray`) or a CasADi SX/MX symbol :return: distance from set as a float or a CasADi symbol """ if fn.is_symbolic(u): # Case I: `u` is a CasADi SX symbol v = u if self.__center is None else u - self.__center elif (isinstance(u, list) and all(isinstance(x, (int, float)) for x in u))\ or isinstance(u, np.ndarray): # Case II: `u` is an array of numbers or an np.ndarray if self.__center is None: v = u else: # Note: self.__center is np.ndarray (`u` might be a list) z = self.__center.reshape(len(u)) u = np.array(u).reshape(len(u)) v = np.subtract(u, z) else: raise Exception("u is of invalid type") # Compute squared distance # Let B = B(xc, r) be a Euclidean ball centered at xc with radius r # # dist_B^2(u) = max(0, sign(t(u))*t(u)^2), where # t(u) = ||u - x_c|| - r # # Note: there is another way to take squared distances: # d_B^2(u) = ||u||^2 * (1 - 1 / max{r, ||u||})^2, # but this leads to slightly lengthier CasADi symbols for # the Jacobian of the squared distance, so this approach was # abandoned t = fn.norm2(v) - self.radius return fn.fmax(0.0, fn.sign(t) * t ** 2)