Exemple #1
0
    def test_options(self):
        """Verify that the PetscKSP specific options are declared."""

        group = Group()
        group.linear_solver = PetscKSP()

        assert (group.linear_solver.options['ksp_type'] == 'fgmres')
Exemple #2
0
    def __init__(self,
                 nTurbines,
                 direction_id=0,
                 datasize=0,
                 differentiable=True,
                 use_rotor_components=False,
                 nSamples=0,
                 wake_model=floris_wrapper,
                 wake_model_options=None):

        super(RotorSolveGroup, self).__init__()

        if wake_model_options is None:
            wake_model_options = {
                'differentiable': differentiable,
                'use_rotor_components': use_rotor_components,
                'nSamples': nSamples
            }

        from openmdao.core.mpi_wrap import MPI

        # set up iterative solvers
        epsilon = 1E-6
        if MPI:
            self.ln_solver = PetscKSP()
        else:
            self.ln_solver = ScipyGMRES()
        self.nl_solver = NLGaussSeidel()
        self.ln_solver.options['atol'] = epsilon

        self.add('CtCp',
                 CPCT_Interpolate_Gradients_Smooth(nTurbines,
                                                   direction_id=direction_id,
                                                   datasize=datasize),
                 promotes=[
                     'gen_params:*',
                     'yaw%i' % direction_id,
                     'wtVelocity%i' % direction_id, 'Cp_out'
                 ])

        # TODO refactor the model component instance
        self.add('floris',
                 wake_model(nTurbines,
                            direction_id=direction_id,
                            wake_model_options=wake_model_options),
                 promotes=([
                     'model_params:*', 'wind_speed', 'axialInduction',
                     'turbineXw', 'turbineYw', 'rotorDiameter',
                     'yaw%i' % direction_id, 'hubHeight',
                     'wtVelocity%i' % direction_id
                 ] if (nSamples == 0) else [
                     'model_params:*', 'wind_speed', 'axialInduction',
                     'turbineXw', 'turbineYw', 'rotorDiameter',
                     'yaw%i' % direction_id, 'hubHeight',
                     'wtVelocity%i' %
                     direction_id, 'wsPositionX', 'wsPositionY', 'wsPositionZ',
                     'wsArray%i' % direction_id
                 ]))
        self.connect('CtCp.Ct_out', 'floris.Ct')
Exemple #3
0
    def test_specify_ksp_type(self):
        import numpy as np

        from openmdao.api import Problem, Group, IndepVarComp, NonlinearBlockGS, PetscKSP, \
             ExecComp
        from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, \
             SellarDis2withDerivatives

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = NonlinearBlockGS()

        model.linear_solver = PetscKSP()
        model.linear_solver.options['ksp_type'] = 'gmres'

        prob.setup()
        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['obj', 'z'][0][0], 9.61001056, .00001)
        assert_rel_error(self, J['obj', 'z'][0][1], 1.78448534, .00001)
Exemple #4
0
    def setup(self):

        self.add_input('a', val=10., units='m')

        rank = self.comm.rank
        GLOBAL_SIZE = 15
        sizes, offsets = evenly_distrib_idxs(self.comm.size, GLOBAL_SIZE)

        self.add_output('states', shape=int(sizes[rank]))

        self.add_output('out_var', shape=1)
        self.local_size = sizes[rank]

        self.linear_solver = PetscKSP()
        self.linear_solver.precon = LinearUserDefined(self.mysolve)
Exemple #5
0
    def test_specify_precon_left(self):
        import numpy as np

        from openmdao.api import Problem, Group, IndepVarComp, DirectSolver, PetscKSP, \
             NewtonSolver, ExecComp
        from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, \
             SellarDis2withDerivatives

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = PetscKSP()

        model.linear_solver.precon = DirectSolver()
        model.linear_solver.options['precon_side'] = 'left'
        model.linear_solver.options['ksp_type'] = 'richardson'

        prob.setup()
        prob.run_model()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)
Exemple #6
0
    def test_method(self):
        p = Problem()

        p.model.add_subsystem('des_vars', IndepVarComp('a', val=10., units='m'), promotes=['*'])

        p.model.add_subsystem('icomp', DistribStateImplicit(), promotes=['*'])

        model = p.model

        model.linear_solver = PetscKSP()
        model.linear_solver.precon = LinearRunOnce()

        p.setup(vector_class=PETScVector, mode='rev', check=False)
        p.run_model()
        jac = p.compute_totals(of=['out_var'], wrt=['a'], return_format='dict')

        assert_rel_error(self, 15.0, jac['out_var']['a'][0][0])
Exemple #7
0
    def test_feature_rtol(self):
        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = NonlinearBlockGS()

        model.linear_solver = PetscKSP()
        model.linear_solver.options['rtol'] = 1.0e-20

        prob.setup()
        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['obj', 'z'][0][0], 9.61001055699, .00001)
        assert_rel_error(self, J['obj', 'z'][0][1], 1.78448533563, .00001)
Exemple #8
0
    def test_specify_precon(self):

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = PetscKSP()

        model.linear_solver.precon = LinearBlockGS()
        model.linear_solver.precon.options['maxiter'] = 2

        prob.setup()
        prob.run_model()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)
Exemple #9
0
    def setup(self):
        self._mpi_proc_allocator.parallel = self.parallel
        if self.parallel:
            self.nonlinear_solver = NewtonSolver()
            self.linear_solver = PetscKSP()
        else:
            self.nonlinear_solver = NonlinearBlockGS()
            self.linear_solver = LinearBlockGS()

        self.add_subsystem('C1',
                           ExecComp('z = 1 / 3. * y + x0'),
                           promotes=['x0'])
        self.add_subsystem('C2',
                           ExecComp('z = 1 / 4. * y + x1'),
                           promotes=['x1'])

        if self.parallel:
            self.connect('C1.z', 'C2.y')
            self.connect('C2.z', 'C1.y')
        else:
            self.connect('C1.z', 'C2.y', src_indices=[self.comm.rank])
            self.connect('C2.z', 'C1.y', src_indices=[self.comm.rank])

        self.parallel = not self.parallel
Exemple #10
0
    def test_feature(self):
        import numpy as np

        from openmdao.api import Problem, ImplicitComponent, IndepVarComp, LinearRunOnce, PetscKSP, PETScVector, LinearUserDefined
        from openmdao.utils.array_utils import evenly_distrib_idxs

        class CustomSolveImplicit(ImplicitComponent):
            def setup(self):

                self.add_input('a', val=10., units='m')

                rank = self.comm.rank
                GLOBAL_SIZE = 15
                sizes, offsets = evenly_distrib_idxs(self.comm.size,
                                                     GLOBAL_SIZE)

                self.add_output('states', shape=int(sizes[rank]))

                self.add_output('out_var', shape=1)
                self.local_size = sizes[rank]

                self.linear_solver = PetscKSP()
                self.linear_solver.precon = LinearUserDefined(
                    solve_function=self.mysolve)

            def solve_nonlinear(self, i, o):
                o['states'] = i['a']

                local_sum = np.zeros(1)
                local_sum[0] = np.sum(o['states'])
                tmp = np.zeros(1)

                o['out_var'] = tmp[0]

            def apply_nonlinear(self, i, o, r):
                r['states'] = o['states'] - i['a']

                local_sum = np.zeros(1)
                local_sum[0] = np.sum(o['states'])
                global_sum = np.zeros(1)

                r['out_var'] = o['out_var'] - tmp[0]

            def apply_linear(self, i, o, d_i, d_o, d_r, mode):
                if mode == 'fwd':
                    if 'states' in d_o:
                        d_r['states'] += d_o['states']

                        local_sum = np.array([np.sum(d_o['states'])])
                        global_sum = np.zeros(1)
                        self.comm.Allreduce(local_sum, global_sum, op=MPI.SUM)
                        d_r['out_var'] -= global_sum

                    if 'out_var' in d_o:
                        d_r['out_var'] += d_o['out_var']

                    if 'a' in d_i:
                        d_r['states'] -= d_i['a']

                elif mode == 'rev':
                    if 'states' in d_o:
                        d_o['states'] += d_r['states']

                        tmp = np.zeros(1)
                        if self.comm.rank == 0:
                            tmp[0] = d_r['out_var'].copy()
                        self.comm.Bcast(tmp, root=0)

                        d_o['states'] -= tmp

                    if 'out_var' in d_o:
                        d_o['out_var'] += d_r['out_var']

                    if 'a' in d_i:
                        d_i['a'] -= np.sum(d_r['states'])

            def mysolve(self, d_outputs, d_residuals, mode):
                r"""
                Apply inverse jac product. The model is assumed to be in an unscaled state.

                If mode is:
                    'fwd': d_residuals \|-> d_outputs

                    'rev': d_outputs \|-> d_residuals

                Parameters
                ----------
                d_outputs : Vector
                    unscaled, dimensional quantities read via d_outputs[key]
                d_residuals : Vector
                    unscaled, dimensional quantities read via d_residuals[key]
                mode : str
                    either 'fwd' or 'rev'

                Returns
                -------
                None or bool or (bool, float, float)
                    The bool is the failure flag; and the two floats are absolute and relative error.
                """
                # Note: we are just preconditioning with Identity as a proof of concept.
                if mode == 'fwd':
                    d_outputs.set_vec(d_residuals)
                elif mode == 'rev':
                    d_residuals.set_vec(d_outputs)

                return False, 0., 0.

        prob = Problem()

        prob.model.add_subsystem('des_vars',
                                 IndepVarComp('a', val=10., units='m'),
                                 promotes=['*'])
        prob.model.add_subsystem('icomp',
                                 CustomSolveImplicit(),
                                 promotes=['*'])

        model = prob.model

        model.linear_solver = PetscKSP()
        model.linear_solver.precon = LinearRunOnce()

        prob.setup(vector_class=PETScVector, mode='rev', check=False)
        prob.run_model()
        jac = prob.compute_totals(of=['out_var'],
                                  wrt=['a'],
                                  return_format='dict')

        assert_rel_error(self, 15.0, jac['out_var']['a'][0][0])
Exemple #11
0
    def setup(self):
        ap = self.options['ap']

        self.solver, self.mesh, self.dvgeo, self.dvcon = self.options[
            'setup_cb'](self.comm)

        # necessary to get some memory properly allocated
        #self.solver.getResidual(ap)

        des_vars, constraints = get_dvs_and_cons(ap, self.dvgeo, self.dvcon)
        geo_vars, _ = get_dvs_and_cons(geo=self.dvgeo)

        self.des_var_names = des_vars
        self.geo_var_names = geo_vars
        self.constraint_names = constraints

        des_var_names = [dv[0][0] for dv in des_vars]
        geo_var_names = [dv[0][0] for dv in geo_vars]

        if self.options['owns_indeps']:
            indeps = self.add_subsystem('indeps',
                                        IndepVarComp(),
                                        promotes=['*'])
            for (args, kwargs) in des_vars:
                name = args[0]
                size = args[1]
                value = kwargs['value']
                if 'units' in kwargs:
                    indeps.add_output(name, value, units=kwargs['units'])
                else:
                    indeps.add_output(name, value)

        states = OM_STATES_COMP(ap=ap,
                                dvgeo=self.dvgeo,
                                solver=self.solver,
                                use_OM_KSP=self.options['use_OM_KSP'])

        self.add_subsystem('states', states, promotes_inputs=des_var_names)

        # this lets the OpenMDAO KSPsolver converge the adjoint using the ADflow PC
        if self.options['use_OM_KSP']:
            states.linear_solver = PetscKSP(iprint=2,
                                            atol=1e-8,
                                            rtol=1e-8,
                                            maxiter=300,
                                            ksp_type='gmres')
            states.linear_solver.precon = LinearUserDefined()

        functionals = OM_FUNC_COMP(ap=ap, dvgeo=self.dvgeo, solver=self.solver)
        self.add_subsystem('functionals',
                           functionals,
                           promotes_inputs=des_var_names,
                           max_procs=self.comm.size)
        self.connect('states.states', 'functionals.states')

        if self.dvcon is not None:

            geocon = OM_GEOCON_COMP(dvgeo=self.dvgeo, dvcon=self.dvcon)
            self.add_subsystem('geocon', geocon, promotes_inputs=geo_var_names)

            for cons in self.dvcon.constraints.values():
                for name, con in cons.items():
                    if self.comm.rank == 0:
                        print('adding nonlinear dvcon constarint: ', name)
                    self.add_constraint('geocon.%s' % name,
                                        lower=con.lower,
                                        upper=con.upper,
                                        ref=1 / con.scale,
                                        vectorize_derivs=True)
            for name, con in self.dvcon.linearCon.items():
                if self.comm.rank == 0:
                    print('adding linear dvcon constraint: ', name)
                self.add_constraint('geocon.%s' % name,
                                    lower=con.lower,
                                    upper=con.upper,
                                    linear=True,
                                    vectorize_derivs=True)