Exemple #1
0
def test_compute_cruise():
    """ Tests cruise phase """

    # Research independent input value in .xml file
    group = Group()
    group.add_subsystem("in_flight_cg_variation",
                        InFlightCGVariation(),
                        promotes=["*"])
    group.add_subsystem("cruise",
                        _compute_cruise(propulsion_id=ENGINE_WRAPPER),
                        promotes=["*"])
    ivc = get_indep_var_comp(list_inputs(group), __file__, XML_FILE)
    ivc.add_output("data:mission:sizing:taxi_out:fuel", 0.50, units="kg")
    ivc.add_output("data:mission:sizing:takeoff:fuel", 0.29, units="kg")
    ivc.add_output("data:mission:sizing:initial_climb:fuel", 0.07, units="kg")
    ivc.add_output("data:mission:sizing:main_route:climb:fuel",
                   5.56,
                   units="kg")
    ivc.add_output("data:mission:sizing:main_route:climb:distance",
                   13.2,
                   units="km")
    ivc.add_output("data:mission:sizing:main_route:descent:distance",
                   0.0,
                   units="km")

    # Run problem and check obtained value(s) is/(are) correct
    register_wrappers()
    problem = run_system(group, ivc)
    fuel_mass = problem.get_val("data:mission:sizing:main_route:cruise:fuel",
                                units="kg")
    assert fuel_mass == pytest.approx(155.003, abs=1e-1)
    duration = problem.get_val(
        "data:mission:sizing:main_route:cruise:duration", units="h")
    assert duration == pytest.approx(5.51, abs=1e-2)
Exemple #2
0
    def setUp(self):

        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        x, y, z = params
        outs = mapdata.output_data
        z = outs[0]
        ivc.add_output('x', x['default'], units=x['units'])
        ivc.add_output('y', y['default'], units=y['units'])
        ivc.add_output('z', z['default'], units=z['units'])

        model.add_subsystem('des_vars', ivc, promotes=["*"])

        comp = MetaModelStructured(method='slinear', extrapolate=True)

        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('comp', comp, promotes=["*"])
        self.prob = Problem(model)
        self.prob.setup()
        self.prob['x'] = 1.0
        self.prob['y'] = 0.75
        self.prob['z'] = -1.7
Exemple #3
0
def test_compute_descent():
    """ Tests descent phase """

    # Research independent input value in .xml file
    group = Group()
    group.add_subsystem("in_flight_cg_variation",
                        InFlightCGVariation(),
                        promotes=["*"])
    group.add_subsystem("descent",
                        _compute_descent(propulsion_id=ENGINE_WRAPPER),
                        promotes=["*"])
    ivc = get_indep_var_comp(list_inputs(group), __file__, XML_FILE)
    ivc.add_output("data:mission:sizing:taxi_out:fuel", 0.98, units="kg")
    ivc.add_output("data:mission:sizing:takeoff:fuel", 0.29, units="kg")
    ivc.add_output("data:mission:sizing:initial_climb:fuel", 0.07, units="kg")
    ivc.add_output("data:mission:sizing:main_route:climb:fuel",
                   5.56,
                   units="kg")
    ivc.add_output("data:mission:sizing:main_route:cruise:fuel",
                   188.05,
                   units="kg")

    # Run problem and check obtained value(s) is/(are) correct
    register_wrappers()
    problem = run_system(group, ivc)
    fuel_mass = problem.get_val("data:mission:sizing:main_route:descent:fuel",
                                units="kg")
    assert fuel_mass == pytest.approx(0.863, abs=1e-2)
    distance = problem.get_val(
        "data:mission:sizing:main_route:descent:distance",
        units="m") / 1000  # conversion to km
    assert distance == pytest.approx(81.255, abs=1e-2)
    duration = problem.get_val(
        "data:mission:sizing:main_route:descent:duration", units="min")
    assert duration == pytest.approx(28.277, abs=1e-2)
    def setUp(self):

        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        x, y, z = params
        outs = mapdata.output_data
        z = outs[0]
        ivc.add_output('x', x['default'], units=x['units'])
        ivc.add_output('y', y['default'], units=y['units'])
        ivc.add_output('z', z['default'], units=z['units'])

        model.add_subsystem('des_vars', ivc, promotes=["*"])

        comp = MetaModelStructured(method='slinear', extrapolate=True)

        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('comp', comp, promotes=["*"])
        self.prob = Problem(model)
        self.prob.setup()
        self.prob['x'] = 1.0
        self.prob['y'] = 0.75
        self.prob['z'] = -1.7
Exemple #5
0
def test_compute_climb():
    """ Tests climb phase """

    # Run problem and check obtained value(s) is/(are) correct
    group = Group()
    group.add_subsystem("in_flight_cg_variation",
                        InFlightCGVariation(),
                        promotes=["*"])
    group.add_subsystem("descent",
                        _compute_climb(propulsion_id=ENGINE_WRAPPER),
                        promotes=["*"])
    ivc = get_indep_var_comp(list_inputs(group), __file__, XML_FILE)
    ivc.add_output("data:mission:sizing:taxi_out:fuel", 0.50, units="kg")
    ivc.add_output("data:mission:sizing:takeoff:fuel", 0.29, units="kg")
    ivc.add_output("data:mission:sizing:initial_climb:fuel", 0.07, units="kg")
    register_wrappers()
    problem = run_system(group, ivc)
    v_cas = problem.get_val("data:mission:sizing:main_route:climb:v_cas",
                            units="kn")
    assert v_cas == pytest.approx(71.5, abs=1)
    fuel_mass = problem.get_val("data:mission:sizing:main_route:climb:fuel",
                                units="kg")
    assert fuel_mass == pytest.approx(5.107, abs=1e-1)
    distance = problem.get_val("data:mission:sizing:main_route:climb:distance",
                               units="m") / 1000.0  # conversion to km
    assert distance == pytest.approx(16.648, abs=1e-2)
    duration = problem.get_val("data:mission:sizing:main_route:climb:duration",
                               units="min")
    assert duration == pytest.approx(5.645, abs=1e-2)
Exemple #6
0
def test_polar_low_speed():
    """Tests ComputePolar"""

    # Need to plug Cd modules, Reynolds and Oswald

    input_list = [
        "data:aerodynamics:aircraft:takeoff:mach",
        "data:geometry:wing:area",
        "data:geometry:wing:span",
        "data:geometry:fuselage:maximum_height",
        "data:geometry:fuselage:maximum_width",
        "data:geometry:wing:root:chord",
        "data:geometry:wing:tip:chord",
        "data:geometry:wing:sweep_25",
        "data:geometry:wing:thickness_ratio",
        "data:geometry:wing:wetted_area",
        "data:geometry:wing:MAC:length",
        "data:geometry:fuselage:length",
        "data:geometry:fuselage:wetted_area",
        "data:geometry:horizontal_tail:MAC:length",
        "data:geometry:horizontal_tail:thickness_ratio",
        "data:geometry:horizontal_tail:sweep_25",
        "data:geometry:horizontal_tail:wetted_area",
        "data:geometry:vertical_tail:MAC:length",
        "data:geometry:vertical_tail:thickness_ratio",
        "data:geometry:vertical_tail:sweep_25",
        "data:geometry:vertical_tail:wetted_area",
        "data:geometry:propulsion:pylon:length",
        "data:geometry:propulsion:nacelle:length",
        "data:geometry:propulsion:pylon:wetted_area",
        "data:geometry:propulsion:nacelle:wetted_area",
        "data:geometry:propulsion:engine:count",
        "data:geometry:propulsion:fan:length",
        "data:geometry:aircraft:wetted_area",
        "tuning:aerodynamics:aircraft:cruise:CD:k",
        "tuning:aerodynamics:aircraft:cruise:CD:offset",
        "tuning:aerodynamics:aircraft:cruise:CD:winglet_effect:k",
        "tuning:aerodynamics:aircraft:cruise:CD:winglet_effect:offset",
    ]
    group = Group()
    group.add_subsystem("reynolds", ComputeReynolds(low_speed_aero=True), promotes=["*"])
    group.add_subsystem("oswald", OswaldCoefficient(low_speed_aero=True), promotes=["*"])
    group.add_subsystem(
        "induced_drag_coeff", InducedDragCoefficient(low_speed_aero=True), promotes=["*"]
    )
    group.add_subsystem("cd0", CD0(low_speed_aero=True), promotes=["*"])
    group.add_subsystem("cd_trim", CdTrim(low_speed_aero=True), promotes=["*"])
    group.add_subsystem("polar", ComputePolar(polar_type=PolarType.LOW_SPEED), promotes=["*"])

    ivc = get_indep_var_comp(input_list)
    ivc.add_output("data:aerodynamics:aircraft:low_speed:CL", np.arange(0.0, 1.5, 0.01))

    problem = run_system(group, ivc)

    cd = problem["data:aerodynamics:aircraft:low_speed:CD"]
    cl = problem["data:aerodynamics:aircraft:low_speed:CL"]

    assert cd[cl == 0.5] == approx(0.033441, abs=1e-5)
    assert cd[cl == 1.0] == approx(0.077523, abs=1e-5)
    def test_shape(self):
        import numpy as np
        from openmdao.api import Group, Problem, IndepVarComp
        from openmdao.components.meta_model_structured import MetaModelStructured

        # create input param training data, of sizes 25, 5, and 10 points resp.
        p1 = np.linspace(0, 100, 25)
        p2 = np.linspace(-10, 10, 5)
        p3 = np.linspace(0, 1, 10)

        # can use meshgrid to create a 3D array of test data
        P1, P2, P3 = np.meshgrid(p1, p2, p3, indexing='ij')
        f = np.sqrt(P1) + P2 * P3

        # verify the shape matches the order and size of the input params
        print(f.shape)


        # Create regular grid interpolator instance
        interp = MetaModelStructured(method='cubic')
        interp.add_input('p1', 0.5, p1)
        interp.add_input('p2', 0.0, p2)
        interp.add_input('p3', 3.14, p3)

        interp.add_output('f', 0.0, f)


        # Set up the OpenMDAO model
        model = Group()
        model.add_subsystem('comp', interp, promotes=["*"])
        prob = Problem(model)
        prob.setup()

        # set inputs
        prob['p1'] = 55.12
        prob['p2'] = -2.14
        prob['p3'] = 0.323

        prob.run_model()

        computed = prob['f']
        actual = 6.73306472

        assert_almost_equal(computed, actual)

        # we can verify all gradients by checking against finit-difference
        prob.check_partials(compact_print=True)
Exemple #8
0
    def test_training_derivatives(self):
        import numpy as np
        from openmdao.api import Group, Problem, IndepVarComp
        from openmdao.components.meta_model_structured import MetaModelStructured

        # create input param training data, of sizes 25, 5, and 10 points resp.
        p1 = np.linspace(0, 100, 25)
        p2 = np.linspace(-10, 10, 5)
        p3 = np.linspace(0, 1, 10)

        # can use meshgrid to create a 3D array of test data
        P1, P2, P3 = np.meshgrid(p1, p2, p3, indexing='ij')
        f = np.sqrt(P1) + P2 * P3

        # verify the shape matches the order and size of the input params
        print(f.shape)

        # Create regular grid interpolator instance
        interp = MetaModelStructured(method='cubic',
                                     training_data_gradients=True)
        interp.add_input('p1', 0.5, p1)
        interp.add_input('p2', 0.0, p2)
        interp.add_input('p3', 3.14, p3)

        interp.add_output('f', 0.0, f)

        # Set up the OpenMDAO model
        model = Group()
        model.add_subsystem('comp', interp, promotes=["*"])
        prob = Problem(model)
        prob.setup()

        # set inputs
        prob['p1'] = 55.12
        prob['p2'] = -2.14
        prob['p3'] = 0.323

        prob.run_model()

        computed = prob['f']
        actual = 6.73306472

        assert_almost_equal(computed, actual)

        # we can verify all gradients by checking against finit-difference
        prob.check_partials(compact_print=True)
Exemple #9
0
    def test_meta_model_structured_deprecated(self):
        # run same test as above, only with the deprecated component,
        # to ensure we get the warning and the correct answer.
        # self-contained, to be removed when class name goes away.
        import numpy as np
        from openmdao.api import Group, Problem, IndepVarComp
        from openmdao.components.meta_model_structured_comp import MetaModelStructured  # deprecated
        import warnings

        with warnings.catch_warnings(record=True) as w:
            xor_interp = MetaModelStructured(method='slinear')

        self.assertEqual(len(w), 1)
        self.assertTrue(issubclass(w[0].category, DeprecationWarning))
        self.assertEqual(str(w[0].message), "'MetaModelStructured' has been deprecated. Use "
                                            "'MetaModelStructuredComp' instead.")

        # set up inputs and outputs
        xor_interp.add_input('x', 0.0, training_data=np.array([0.0, 1.0]), units=None)
        xor_interp.add_input('y', 1.0, training_data=np.array([0.0, 1.0]), units=None)

        xor_interp.add_output('xor', 1.0, training_data=np.array([[0.0, 1.0], [1.0, 0.0]]), units=None)

        # Set up the OpenMDAO model
        model = Group()
        ivc = IndepVarComp()
        ivc.add_output('x', 0.0)
        ivc.add_output('y', 1.0)
        model.add_subsystem('ivc', ivc, promotes=["*"])
        model.add_subsystem('comp', xor_interp, promotes=["*"])
        prob = Problem(model)
        prob.setup()

        # Now test out a 'fuzzy' XOR
        prob['x'] = 0.9
        prob['y'] = 0.001242

        prob.run_model()

        computed = prob['xor']
        actual = 0.8990064

        assert_almost_equal(computed, actual)

        # we can verify all gradients by checking against finite-difference
        prob.check_partials(compact_print=True)
    def test_training_gradient(self):
        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        outs = mapdata.output_data

        ivc.add_output('x', np.array([-0.3, 0.7, 1.2]))
        ivc.add_output('y', np.array([0.14, 0.313, 1.41]))
        ivc.add_output('z', np.array([-2.11, -1.2, 2.01]))

        ivc.add_output('f_train', outs[0]['values'])
        ivc.add_output('g_train', outs[1]['values'])

        comp = MetaModelStructured(training_data_gradients=True,
                                   method='cubic',
                                   num_nodes=3)
        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('ivc', ivc, promotes=["*"])
        model.add_subsystem('comp',
                            comp,
                            promotes=["*"])


        prob = Problem(model)
        prob.setup()
        prob.run_model()

        val0 = np.array([ 50.26787317, 49.76106232, 19.66117913])
        val1 = np.array([-32.62094041, -31.67449135, -27.46959668])

        tol = 1e-5
        assert_rel_error(self, prob['f'], val0, tol)
        assert_rel_error(self, prob['g'], val1, tol)
        self.run_and_check_derivs(prob)
Exemple #11
0
    def test_training_gradient(self):
        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        outs = mapdata.output_data

        ivc.add_output('x', np.array([-0.3, 0.7, 1.2]))
        ivc.add_output('y', np.array([0.14, 0.313, 1.41]))
        ivc.add_output('z', np.array([-2.11, -1.2, 2.01]))

        ivc.add_output('f_train', outs[0]['values'])
        ivc.add_output('g_train', outs[1]['values'])

        comp = MetaModelStructuredComp(training_data_gradients=True,
                                       method='cubic',
                                       num_nodes=3)
        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('ivc', ivc, promotes=["*"])
        model.add_subsystem('comp',
                            comp,
                            promotes=["*"])


        prob = Problem(model)
        prob.setup()
        prob.run_model()

        val0 = np.array([ 50.26787317,  49.76106232,  19.66117913])
        val1 = np.array([-32.62094041, -31.67449135, -27.46959668])

        tol = 1e-5
        assert_rel_error(self, prob['f'], val0, tol)
        assert_rel_error(self, prob['g'], val1, tol)
        self.run_and_check_derivs(prob)
    def test_raise_out_of_bounds_error(self):
        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        x, y, z = params
        outs = mapdata.output_data
        z = outs[0]
        ivc.add_output('x', x['default'], units=x['units'])
        ivc.add_output('y', y['default'], units=y['units'])
        ivc.add_output('z', z['default'], units=z['units'])

        model.add_subsystem('des_vars', ivc, promotes=["*"])

        # Need to make sure extrapolate is False for bounds to be checked
        comp = MetaModelStructured(method='slinear', extrapolate=False)

        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('comp', comp, promotes=["*"])
        self.prob = Problem(model)
        self.prob.setup()

        self.prob['x'] = 1.0
        self.prob['y'] = 0.75
        self.prob['z'] = 9.0 # intentionally set to be out of bounds

        # The interpolating output name is given as a regexp because the exception could
        #   happen with f or g first. The order those are evaluated comes from the keys of
        #   dict so no guarantee on the order except for Python 3.6 !
        msg = "Error interpolating output '[f|g]' in 'comp' " + "because input 'comp.z' was " \
                "out of bounds \('.*', '.*'\) with value '9.0'"
        with assertRaisesRegex(self, ValueError, msg):
           self.run_and_check_derivs(self.prob)
Exemple #13
0
    def test_raise_out_of_bounds_error(self):
        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        x, y, z = params
        outs = mapdata.output_data
        z = outs[0]
        ivc.add_output('x', x['default'], units=x['units'])
        ivc.add_output('y', y['default'], units=y['units'])
        ivc.add_output('z', z['default'], units=z['units'])

        model.add_subsystem('des_vars', ivc, promotes=["*"])

        # Need to make sure extrapolate is False for bounds to be checked
        comp = MetaModelStructured(method='slinear', extrapolate=False)

        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('comp', comp, promotes=["*"])
        self.prob = Problem(model)
        self.prob.setup()

        self.prob['x'] = 1.0
        self.prob['y'] = 0.75
        self.prob['z'] = 9.0  # intentionally set to be out of bounds

        # The interpolating output name is given as a regexp because the exception could
        #   happen with f or g first. The order those are evaluated comes from the keys of
        #   dict so no guarantee on the order except for Python 3.6 !
        msg = "Error interpolating output '[f|g]' in 'comp' " + "because input 'comp.z' was " \
                "out of bounds \('.*', '.*'\) with value '9.0'"
        with assertRaisesRegex(self, ValueError, msg):
            self.run_and_check_derivs(self.prob)
Exemple #14
0
    def test_xor(self):
        import numpy as np
        from openmdao.api import Group, Problem, IndepVarComp
        from openmdao.components.meta_model_structured import MetaModelStructured

        # Create regular grid interpolator instance
        xor_interp = MetaModelStructured(method='slinear')

        # set up inputs and outputs
        xor_interp.add_input('x', 0.0, np.array([0.0, 1.0]), units=None)
        xor_interp.add_input('y', 1.0, np.array([0.0, 1.0]), units=None)

        xor_interp.add_output('xor',
                              1.0,
                              np.array([[0.0, 1.0], [1.0, 0.0]]),
                              units=None)

        # Set up the OpenMDAO model
        model = Group()
        ivc = IndepVarComp()
        ivc.add_output('x', 0.0)
        ivc.add_output('y', 1.0)
        model.add_subsystem('ivc', ivc, promotes=["*"])
        model.add_subsystem('comp', xor_interp, promotes=["*"])
        prob = Problem(model)
        prob.setup()

        # Now test out a 'fuzzy' XOR
        prob['x'] = 0.9
        prob['y'] = 0.001242

        prob.run_model()

        computed = prob['xor']
        actual = 0.8990064

        assert_almost_equal(computed, actual)

        # we can verify all gradients by checking against finit-difference
        prob.check_partials(compact_print=True)
    def test_xor(self):
        import numpy as np
        from openmdao.api import Group, Problem, IndepVarComp
        from openmdao.components.meta_model_structured import MetaModelStructured

        # Create regular grid interpolator instance
        xor_interp = MetaModelStructured(method='slinear')

        # set up inputs and outputs
        xor_interp.add_input('x', 0.0, np.array([0.0, 1.0]), units=None)
        xor_interp.add_input('y', 1.0, np.array([0.0, 1.0]), units=None)

        xor_interp.add_output('xor', 1.0, np.array([[0.0, 1.0], [1.0, 0.0]]), units=None)

        # Set up the OpenMDAO model
        model = Group()
        ivc = IndepVarComp()
        ivc.add_output('x', 0.0)
        ivc.add_output('y', 1.0)
        model.add_subsystem('ivc', ivc, promotes=["*"])
        model.add_subsystem('comp', xor_interp, promotes=["*"])
        prob = Problem(model)
        prob.setup()

        # Now test out a 'fuzzy' XOR
        prob['x'] = 0.9
        prob['y'] = 0.001242

        prob.run_model()

        computed = prob['xor']
        actual = 0.8990064

        assert_almost_equal(computed, actual)

        # we can verify all gradients by checking against finit-difference
        prob.check_partials(compact_print=True)
Exemple #16
0
        x = inputs['x']
        y = inputs['y']

        outputs['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0


if __name__ == "__main__":
    from openmdao.core.problem import Problem
    from openmdao.core.group import Group
    from openmdao.core.indepvarcomp import IndepVarComp

    model = Group()
    ivc = IndepVarComp()
    ivc.add_output('x', 3.0)
    ivc.add_output('y', -4.0)
    model.add_subsystem('des_vars', ivc)
    model.add_subsystem('parab_comp', Paraboloid())

    model.connect('des_vars.x', 'parab_comp.x')
    model.connect('des_vars.y', 'parab_comp.y')

    prob = Problem(model)
    prob.setup()
    prob.run_model()
    print(prob['parab_comp.f_xy'])

    prob['des_vars.x'] = 5.0
    prob['des_vars.y'] = -2.0
    prob.run_model()
    print(prob['parab_comp.f_xy'])
    Bfw0 = 24506700.5989

    # spline parameterization
    nspline = 6
    rspline = np.linspace(Rhub, Rtip, nspline)
    ivc.add_output('rspline', rspline)  # starting point
    chordspline = np.interp(rspline, r, initial['planform']['Chord'][1:-1])
    thetaspline = np.interp(rspline, r, initial['planform']['Twist'][1:-1])
    tcspline = np.interp(rspline, r, tcinitial)
    ivc.add_output('chordspline', chordspline)  # starting point
    ivc.add_output('thetaspline', thetaspline)  # starting point
    tcspline[0] = 1.0  # must be cylinder at root
    ivc.add_output('tcspline', tcspline)  # starting point

    model = Group()
    model.add_subsystem('inputs', ivc, promotes=['*'])
    model.add_subsystem('spline', Spline(), promotes=['*'])
    model.add_subsystem('blending', DetermineBlending(), promotes=['*'])
    model.add_subsystem('ccblade', CCBlade(), promotes=['*'])
    model.add_subsystem('thickness', ThicknessMargin(), promotes=['*'])
    model.add_subsystem('aep', AEP(), promotes=['*'])

    prob = Problem(model)

    # prob.setup()
    # prob.check_partials(compact_print=True)

    # # ------------ run actual optmization -----

    # prob.driver = pyOptSparseDriver()
    # prob.driver.options['optimizer'] = "SNOPT"
Exemple #18
0
def test_polar_high_speed():
    """ Tests ComputePolar """

    # Need to plug Cd modules, Reynolds and Oswald

    input_list = [
        "tuning:aerodynamics:aircraft:cruise:CD:k",
        "tuning:aerodynamics:aircraft:cruise:CD:offset",
        "tuning:aerodynamics:aircraft:cruise:CD:winglet_effect:k",
        "tuning:aerodynamics:aircraft:cruise:CD:winglet_effect:offset",
        "data:geometry:fuselage:maximum_height",
        "data:geometry:fuselage:length",
        "data:geometry:fuselage:wetted_area",
        "data:geometry:fuselage:maximum_width",
        "data:geometry:wing:area",
        "data:geometry:horizontal_tail:MAC:length",
        "data:geometry:horizontal_tail:sweep_25",
        "data:geometry:horizontal_tail:thickness_ratio",
        "data:geometry:horizontal_tail:wetted_area",
        "data:geometry:wing:area",
        "data:geometry:propulsion:engine:count",
        "data:geometry:propulsion:fan:length",
        "data:geometry:propulsion:nacelle:length",
        "data:geometry:propulsion:nacelle:wetted_area",
        "data:geometry:propulsion:pylon:length",
        "data:geometry:propulsion:pylon:wetted_area",
        "data:geometry:wing:area",
        "data:geometry:aircraft:wetted_area",
        "data:geometry:vertical_tail:MAC:length",
        "data:geometry:vertical_tail:sweep_25",
        "data:geometry:vertical_tail:thickness_ratio",
        "data:geometry:vertical_tail:wetted_area",
        "data:geometry:wing:MAC:length",
        "data:geometry:wing:sweep_25",
        "data:geometry:wing:thickness_ratio",
        "data:geometry:wing:wetted_area",
        "data:geometry:wing:span",
        "data:geometry:wing:root:chord",
        "data:geometry:wing:tip:chord",
        "data:TLAR:cruise_mach",
        "data:mission:sizing:main_route:cruise:altitude",
    ]
    group = Group()
    group.add_subsystem("reynolds", ComputeReynolds(), promotes=["*"])
    group.add_subsystem("oswald", OswaldCoefficient(), promotes=["*"])
    group.add_subsystem("cd0", CD0(), promotes=["*"])
    group.add_subsystem("cd_compressibility",
                        CdCompressibility(),
                        promotes=["*"])
    group.add_subsystem("cd_trim", CdTrim(), promotes=["*"])
    group.add_subsystem("polar", ComputePolar(), promotes=["*"])

    ivc = get_indep_var_comp(input_list)
    ivc.add_output("data:aerodynamics:aircraft:cruise:CL",
                   np.arange(0.0, 1.5, 0.01))

    problem = run_system(group, ivc)

    cd = problem["data:aerodynamics:aircraft:cruise:CD"]
    cl = problem["data:aerodynamics:aircraft:cruise:CL"]

    assert cd[cl == 0.0] == approx(0.02102, abs=1e-5)
    assert cd[cl == 0.2] == approx(0.02281, abs=1e-5)
    assert cd[cl == 0.42] == approx(0.02977, abs=1e-5)
    assert cd[cl == 0.85] == approx(0.07062, abs=1e-5)

    assert problem["data:aerodynamics:aircraft:cruise:optimal_CL"] == approx(
        0.51, abs=1e-3)
    assert problem["data:aerodynamics:aircraft:cruise:optimal_CD"] == approx(
        0.03487, abs=1e-5)
Exemple #19
0
        y = inputs['y']

        partials['f_xy', 'x'] = 2.0 * x - 6.0 + y
        partials['f_xy', 'y'] = 2.0 * y + 8.0 + x


if __name__ == "__main__":
    from openmdao.core.problem import Problem
    from openmdao.core.group import Group
    from openmdao.core.indepvarcomp import IndepVarComp

    model = Group()
    ivc = IndepVarComp()
    ivc.add_output('x', 3.0)
    ivc.add_output('y', -4.0)
    model.add_subsystem('des_vars', ivc)
    model.add_subsystem('parab_comp', Paraboloid())

    model.connect('des_vars.x', 'parab_comp.x')
    model.connect('des_vars.y', 'parab_comp.y')

    prob = Problem(model)
    prob.setup()
    prob.run_model()
    print(prob['parab_comp.f_xy'])

    prob['des_vars.x'] = 5.0
    prob['des_vars.y'] = -2.0
    prob.run_model()
    print(prob['parab_comp.f_xy'])