Exemple #1
0
    def test_explicit_connection_errors(self):
        class A(Component):
            def __init__(self):
                super(A, self).__init__()
                self.add_state('x', 0)

        class B(Component):
            def __init__(self):
                super(B, self).__init__()
                self.add_param('x', 0)

        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())

        prob.root.connect('A.x', 'B.x')
        prob.setup(check=False)

        expected_error_message = (
            "Source 'A.y' cannot be connected to target 'B.x': "
            "'A.y' does not exist.")
        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())
        prob.root.connect('A.y', 'B.x')

        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)

        expected_error_message = (
            "Source 'A.x' cannot be connected to target 'B.y': "
            "'B.y' does not exist.")
        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())
        prob.root.connect('A.x', 'B.y')

        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)

        expected_error_message = (
            "Source 'A.x' cannot be connected to target 'A.x': "
            "Target must be a parameter but 'A.x' is an unknown.")
        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())
        prob.root.connect('A.x', 'A.x')

        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)
Exemple #2
0
    def test_incompatible_connections(self):

        class BadComp(Component):
            def __init__(self):
                super(BadComp, self).__init__()

                self.add_param('x2', 100.0, units='m')
                self.add_output('x3', 100.0)

        # Explicit Connection
        prob = Problem()
        prob.root = Group()
        prob.root.add('src', SrcComp())
        prob.root.add('dest', BadComp())
        prob.root.connect('src.x2', 'dest.x2')
        with self.assertRaises(TypeError) as cm:
            prob.setup(check=False)

        expected_msg = "Unit 'degC' in source 'src.x2' is incompatible with unit 'm' in target 'dest.x2'."

        self.assertEqual(str(cm.exception), expected_msg)

        # Implicit Connection
        prob = Problem()
        prob.root = Group()
        prob.root.add('src', SrcComp(), promotes=['x2'])
        prob.root.add('dest', BadComp(),promotes=['x2'])
        with self.assertRaises(TypeError) as cm:
            prob.setup(check=False)

        expected_msg = "Unit 'degC' in source 'x2' is incompatible with unit 'm' in target 'x2'."

        self.assertEqual(str(cm.exception), expected_msg)
Exemple #3
0
    def test_incompatible_connections(self):

        class BadComp(Component):
            def __init__(self):
                super(BadComp, self).__init__()

                self.add_param('x2', 100.0, units='m')
                self.add_output('x3', 100.0)

        # Explicit Connection
        prob = Problem()
        prob.root = Group()
        prob.root.add('src', SrcComp())
        prob.root.add('dest', BadComp())
        prob.root.connect('src.x2', 'dest.x2')
        with self.assertRaises(TypeError) as cm:
            prob.setup(check=False)

        expected_msg = "Unit 'degC' in source 'src.x2' is incompatible with unit 'm' in target 'dest.x2'."

        self.assertEqual(str(cm.exception), expected_msg)

        # Implicit Connection
        prob = Problem()
        prob.root = Group()
        prob.root.add('src', SrcComp(), promotes=['x2'])
        prob.root.add('dest', BadComp(),promotes=['x2'])
        with self.assertRaises(TypeError) as cm:
            prob.setup(check=False)

        expected_msg = "Unit 'degC' in source 'x2' is incompatible with unit 'm' in target 'x2'."

        self.assertEqual(str(cm.exception), expected_msg)
    def test_explicit_connection_errors(self):
        class A(Component):
            def __init__(self):
                super(A, self).__init__()
                self.add_state('x', 0)

        class B(Component):
            def __init__(self):
                super(B, self).__init__()
                self.add_param('x', 0)

        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())

        prob.root.connect('A.x', 'B.x')
        prob.setup(check=False)

        expected_error_message = ("Source 'A.y' cannot be connected to target 'B.x': "
                                  "'A.y' does not exist.")
        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())
        prob.root.connect('A.y', 'B.x')

        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)

        expected_error_message = ("Source 'A.x' cannot be connected to target 'B.y': "
                                  "'B.y' does not exist.")
        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())
        prob.root.connect('A.x', 'B.y')

        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)

        expected_error_message = ("Source 'A.x' cannot be connected to target 'A.x': "
                                  "Target must be a parameter but 'A.x' is an unknown.")
        prob = Problem()
        prob.root = Group()
        prob.root.add('A', A())
        prob.root.add('B', B())
        prob.root.connect('A.x', 'A.x')

        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)
Exemple #5
0
    def test_read4(self):
        # Variables on same line as header

        namelist1 = "Testing\n" + \
                    "  \n" + \
                    "&OPTION boolvar = T, arrayvar = 3.5, 7.76, 1.23\n" + \
                    "/\n"

        outfile = open(self.filename, 'w')
        outfile.write(namelist1)
        outfile.close()

        top = Problem()
        top.root = Group()
        top.root.add('my_comp', VarComponent())

        top.setup(check=False)
        top.run()

        sb = Namelist(top.root.my_comp)
        sb.set_filename(self.filename)

        sb.parse_file()

        sb.load_model()

        self.assertEqual(top['my_comp.boolvar'], True)
        self.assertEqual(top['my_comp.arrayvar'][0], 3.5)

        namelist1 = "Testing\n" + \
                    "  \n" + \
                    "$OPTION boolvar = T, arrayvar = 3.5, 7.76, 1.23, $END\n"

        outfile = open(self.filename, 'w')
        outfile.write(namelist1)
        outfile.close()

        top = Problem()
        top.root = Group()
        top.root.add('my_comp', VarComponent())

        top.setup(check=False)
        top.run()

        sb = Namelist(top.root.my_comp)
        sb.set_filename(self.filename)

        sb.parse_file()

        sb.load_model()

        self.assertEqual(top['my_comp.boolvar'], True)
        self.assertEqual(top['my_comp.arrayvar'][0], 3.5)
    def test_simple_matvec(self):

        class VerificationComp(SimpleCompDerivMatVec):

            def jacobian(self, params, unknowns, resids):
                raise RuntimeError("Derivative functions on this comp should not run.")

            def apply_linear(self, params, unknowns, dparams, dunknowns,
                             dresids, mode):
                raise RuntimeError("Derivative functions on this comp should not run.")

        sub = Group()
        sub.add('mycomp', VerificationComp())

        prob = Problem()
        prob.root = Group()
        prob.root.add('sub', sub)
        prob.root.add('x_param', IndepVarComp('x', 1.0))
        prob.root.connect('x_param.x', "sub.mycomp.x")

        sub.fd_options['force_fd'] = True
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x_param.x'], ['sub.mycomp.y'], mode='fwd',
                              return_format='dict')
        assert_rel_error(self, J['sub.mycomp.y']['x_param.x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x_param.x'], ['sub.mycomp.y'], mode='rev',
                              return_format='dict')
        assert_rel_error(self, J['sub.mycomp.y']['x_param.x'][0][0], 2.0, 1e-6)
Exemple #7
0
    def test_record_derivs_dicts(self):

        if OPT is None:
            raise unittest.SkipTest("pyoptsparse is not installed")

        if OPTIMIZER is None:
            raise unittest.SkipTest(
                "pyoptsparse is not providing SNOPT or SLSQP")

        prob = Problem()
        prob.root = SellarDerivativesGrouped()

        prob.driver = pyOptSparseDriver()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.opt_settings['ACC'] = 1e-9
        prob.driver.options['print_results'] = False

        prob.driver.add_desvar('z',
                               lower=np.array([-10.0, 0.0]),
                               upper=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', lower=0.0, upper=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        self.recorder.options['record_derivs'] = True
        prob.setup(check=False)

        prob.run()

        prob.cleanup()

        hdf = h5py.File(self.filename, 'r')

        deriv_group = hdf['rank0:SLSQP|1']['Derivs']

        self.assertEqual(deriv_group.attrs['success'], 1)
        self.assertEqual(deriv_group.attrs['msg'], '')

        J1 = deriv_group['Derivatives']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J1[key1][key2][:], val2, .00001)

        hdf.close()
    def test_simple_deriv_xfer(self):

        prob = Problem(impl=impl)
        prob.root = FanInGrouped()
        prob.setup(check=False)

        prob.root.comp3.dpmat[None]['x1'] = 7.
        prob.root.comp3.dpmat[None]['x2'] = 11.
        prob.root._transfer_data(mode='rev', deriv=True)

        if not MPI or self.comm.rank == 0:
            self.assertEqual(prob.root.sub.comp1.dumat[None]['y'], 7.)

        if not MPI or self.comm.rank == 1:
            self.assertEqual(prob.root.sub.comp2.dumat[None]['y'], 11.)

        prob.root.comp3.dpmat[None]['x1'] = 0.
        prob.root.comp3.dpmat[None]['x2'] = 0.
        self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 0.)
        self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 0.)

        prob.root._transfer_data(mode='fwd', deriv=True)

        self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 7.)
        self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 11.)
    def test_bad_size(self):

        class BadComp(SimpleArrayComp):
            def jacobian(self, params, unknowns, resids):
                """Analytical derivatives"""
                J = {}
                J[('y', 'x')] = np.zeros((3, 3))
                return J


        prob = Problem()
        prob.root = Group()
        prob.root.add('comp', BadComp())
        prob.root.add('p1', ParamComp('x', np.ones([2])))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        try:
            data = prob.check_partial_derivatives(out_stream=None)
        except Exception as err:
            msg = "Jacobian in component 'comp' between the" + \
                " variables 'x' and 'y' is the wrong size. " + \
                "It should be 2 by 2"
            self.assertEqual(str(err), msg)
        else:
            self.fail("Error expected")
    def test_full_model_fd_double_diamond_grouped(self):

        prob = Problem()
        prob.root = ConvergeDivergeGroups()
        prob.setup(check=False)
        prob.run()

        prob.root.fd_options['force_fd'] = True

        param_list = ['sub1.comp1.x1']
        unknown_list = ['comp7.y1']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['sub1.comp1.x1'][0][0], -40.75,
                         1e-6)

        prob.root.fd_options['form'] = 'central'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['sub1.comp1.x1'][0][0], -40.75,
                         1e-6)
    def test_bad_size(self):
        class BadComp(SimpleArrayComp):
            def jacobian(self, params, unknowns, resids):
                """Analytical derivatives"""
                J = {}
                J[('y', 'x')] = np.zeros((3, 3))
                return J

        prob = Problem()
        prob.root = Group()
        prob.root.add('comp', BadComp())
        prob.root.add('p1', ParamComp('x', np.ones([2])))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        try:
            data = prob.check_partial_derivatives(out_stream=None)
        except Exception as err:
            msg = "Jacobian in component 'comp' between the" + \
                " variables 'x' and 'y' is the wrong size. " + \
                "It should be 2 by 2"
            self.assertEqual(str(err), msg)
        else:
            self.fail("Error expected")
Exemple #12
0
    def test_fan_in_serial_sets(self):

        prob = Problem(impl=impl)
        prob.root = FanInGrouped()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.sub.ln_solver = LinearGaussSeidel()

        # Parallel Groups
        prob.driver.add_param('p1.x1')
        prob.driver.add_param('p2.x2')
        prob.driver.add_objective('comp3.y')

        prob.setup(check=False)
        prob.run()

        param_list = ['p1.x1', 'p2.x2']
        unknown_list = ['comp3.y']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
Exemple #13
0
    def test_fan_out_serial_sets(self):

        prob = Problem(impl=impl)
        prob.root = FanOutGrouped()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.sub.ln_solver = LinearGaussSeidel()

        # Parallel Groups
        prob.driver.add_param('p.x')
        prob.driver.add_constraint('c2.y')
        prob.driver.add_constraint('c3.y')

        prob.setup(check=False)
        prob.run()

        unknown_list = ['c2.y', 'c3.y']
        param_list = ['p.x']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['c2.y']['p.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y']['p.x'][0][0], 15.0, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['c2.y']['p.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y']['p.x'][0][0], 15.0, 1e-6)
    def test_fan_out_parallel_sets(self):

        prob = Problem(impl=impl)
        prob.root = FanOutGrouped()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.sub.ln_solver = LinearGaussSeidel()

        # need to set mode to rev before setup. Otherwise the sub-vectors
        # for the parallel set vars won't get allocated.
        prob.root.ln_solver.options['mode'] = 'rev'
        prob.root.sub.ln_solver.options['mode'] = 'rev'

        # Parallel Groups
        prob.driver.add_param('p.x')
        prob.driver.add_constraint('c2.y')
        prob.driver.add_constraint('c3.y')
        prob.driver.parallel_derivs(['c2.y','c3.y'])

        self.assertEqual(prob.driver.outputs_of_interest(),
                         [('c2.y','c3.y')])
        prob.setup(check=False)
        prob.run()

        unknown_list = ['c2.y', 'c3.y']
        param_list = ['p.x']

        J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict')
        assert_rel_error(self, J['c2.y']['p.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y']['p.x'][0][0], 15.0, 1e-6)

        J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict')
        assert_rel_error(self, J['c2.y']['p.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y']['p.x'][0][0], 15.0, 1e-6)
Exemple #15
0
    def test_only_params_recorded(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_params'] = True
        self.recorder.options['record_resids'] = False
        self.recorder.options['record_unknowns'] = False
        prob.setup(check=False)

        t0, t1 = run_problem(prob)
        self.recorder.close()

        coordinate = ['Driver', (1,)]
        expected_params = [
            ("comp1.x1", 2.0),
            ("comp2.x1", 8.0),
            ("comp3.x1", 6.0),
            ("comp4.x1", 4.0),
            ("comp4.x2", 21.0),
            ("comp5.x1", 46.0),
            ("comp6.x1", -93.0),
            ("comp7.x1", 36.8),
            ("comp7.x2", -46.5)
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), expected_params, None, None),), self.eps)
    def test_single_diamond_grouped(self):

        prob = Problem()
        prob.root = SingleDiamondGrouped()
        prob.root.ln_solver = ScipyGMRES()
        prob.setup(check=False)
        prob.run()

        param_list = ['p.x']
        unknown_list = ['comp4.y1', 'comp4.y2']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
        assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
        assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='dict')
        assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
        assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)
    def test_converge_diverge_groups(self):

        prob = Problem()
        prob.root = ConvergeDivergeGroups()
        prob.root.ln_solver = ScipyGMRES()
        prob.setup(check=False)
        prob.run()

        # Make sure value is fine.
        assert_rel_error(self, prob['comp7.y1'], -102.7, 1e-6)

        param_list = ['p.x']
        unknown_list = ['comp7.y1']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
    def test_fan_in_grouped(self):

        prob = Problem()
        prob.root = FanInGrouped()
        prob.root.ln_solver = ScipyGMRES()

        param_list = ['p1.x1', 'p2.x2']
        unknown_list = ['comp3.y']

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
    def test_double_arraycomp(self):
        # Mainly testing a bug in the array return for multiple arrays

        group = Group()
        group.add('x_param1', ParamComp('x1', np.ones((2))), promotes=['*'])
        group.add('x_param2', ParamComp('x2', np.ones((2))), promotes=['*'])
        group.add('mycomp', DoubleArrayComp(), promotes=['*'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = ScipyGMRES()
        prob.setup(check=False)
        prob.run()

        Jbase = group.mycomp.JJ

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='fwd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='fd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='rev',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)
Exemple #20
0
    def test_index_error_messages_con(self):

        prob = Problem()
        prob.root = Group()
        prob.root.fd_options['force_fd'] = True
        prob.root.ln_solver.options['mode'] = 'auto'

        prob.root.add('myparams', ParamComp('x', np.zeros(4)))
        prob.root.add('rosen', Rosenbrock(4))

        prob.root.connect('myparams.x', 'rosen.x')

        prob.driver = MySimpleDriver()
        prob.driver.add_param('myparams.x')
        prob.driver.add_constraint('rosen.xxx', indices=[4])

        prob.setup(check=False)

        # Make sure we can't do this
        with self.assertRaises(IndexError) as cm:
            prob.run()

        msg = "Index for constraint 'rosen.xxx' is out of bounds. "
        msg += "Requested index: [4], "
        msg += "Parameter shape: (4,)."
        raised_error = str(cm.exception)
        raised_error = raised_error.replace('(4L,', '(4,')
        self.assertEqual(msg, raised_error)
Exemple #21
0
    def test_Sellar_state_SLSQP(self):

        prob = Problem()
        prob.root = SellarStateConnection()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_param('z',
                              low=np.array([-10.0, 0.0]),
                              high=np.array([10.0, 10.0]))
        prob.driver.add_param('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1')
        prob.driver.add_constraint('con2')
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
Exemple #22
0
    def test_only_resids_recorded(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_params'] = False
        self.recorder.options['record_unknowns'] = False
        self.recorder.options['record_resids'] = True
        prob.setup(check=False)

        t0, t1 = run_problem(prob)
        prob.cleanup() # closes recorders

        coordinate = [0, 'Driver', (1, )]

        expected_resids = [
            ("comp1.y1", 0.0),
            ("comp1.y2", 0.0),
            ("comp2.y1", 0.0),
            ("comp3.y1", 0.0),
            ("comp4.y1", 0.0),
            ("comp4.y2", 0.0),
            ("comp5.y1", 0.0),
            ("comp6.y1", 0.0),
            ("comp7.y1", 0.0),
            ("p.x", 0.0)
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), None, None, expected_resids),), self.eps)
Exemple #23
0
    def test_multilevel_record(self):
        prob = Problem()
        prob.root = ExampleGroup()
        prob.root.G2.G1.nl_solver.add_recorder(self.recorder)
        prob.driver.add_recorder(self.recorder)
        self.recorder.options["record_params"] = True
        self.recorder.options["record_resids"] = True
        prob.setup(check=False)
        t0, t1 = run_problem(prob)
        prob.cleanup()  # closes recorders

        solver_coordinate = ["Driver", (1,), "root", (1,), "G2", (1,), "G1", (1,)]

        g1_expected_params = [("C2.x", 5.0)]
        g1_expected_unknowns = [("C2.y", 10.0)]
        g1_expected_resids = [("C2.y", 0.0)]

        g1_expected = (g1_expected_params, g1_expected_unknowns, g1_expected_resids)

        driver_coordinate = ["Driver", (1,)]

        driver_expected_params = [("G3.C3.x", 10.0)]

        driver_expected_unknowns = [("G2.C1.x", 5.0), ("G2.G1.C2.y", 10.0), ("G3.C3.y", 20.0), ("G3.C4.y", 40.0)]

        driver_expected_resids = [("G2.C1.x", 0.0), ("G2.G1.C2.y", 0.0), ("G3.C3.y", 0.0), ("G3.C4.y", 0.0)]

        expected = []
        expected.append((solver_coordinate, (t0, t1), g1_expected_params, g1_expected_unknowns, g1_expected_resids))
        expected.append(
            (driver_coordinate, (t0, t1), driver_expected_params, driver_expected_unknowns, driver_expected_resids)
        )

        self.assertIterationDataRecorded(expected, self.eps)
Exemple #24
0
    def test_sublevel_record(self):

        prob = Problem()
        prob.root = ExampleGroup()
        prob.root.G2.G1.nl_solver.add_recorder(self.recorder)
        self.recorder.options['record_params'] = True
        self.recorder.options['record_resids'] = True
        prob.setup(check=False)
        t0, t1 = run_problem(prob)
        prob.cleanup() # closes recorders

        coordinate = [0, 'Driver', (1,), "root", (1,), "G2", (1,), "G1", (1,)]

        expected_params = [
            ("C2.x", 5.0)
        ]
        expected_unknowns = [
            ("C2.y", 10.0)
        ]
        expected_resids = [
            ("C2.y", 0.0)
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), expected_params,
                                expected_unknowns, expected_resids),), self.eps)
Exemple #25
0
    def test_simple_matvec(self):
        class VerificationComp(SimpleCompDerivMatVec):
            def jacobian(self, params, unknowns, resids):
                raise RuntimeError(
                    "Derivative functions on this comp should not run.")

            def apply_linear(self, params, unknowns, dparams, dunknowns,
                             dresids, mode):
                raise RuntimeError(
                    "Derivative functions on this comp should not run.")

        sub = Group()
        sub.add('mycomp', VerificationComp())

        prob = Problem()
        prob.root = Group()
        prob.root.add('sub', sub)
        prob.root.add('x_param', ParamComp('x', 1.0))
        prob.root.connect('x_param.x', "sub.mycomp.x")

        sub.fd_options['force_fd'] = True
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x_param.x'], ['sub.mycomp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['sub.mycomp.y']['x_param.x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x_param.x'], ['sub.mycomp.y'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['sub.mycomp.y']['x_param.x'][0][0], 2.0, 1e-6)
    def test_driver_param_indices_slsqp_force_fd(self):
        """ Test driver param indices with ScipyOptimizer SLSQP and force_fd=True


        """

        prob = Problem()
        prob.root = SellarStateConnection()
        prob.root.fd_options['force_fd'] = True

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z', low=np.array([-10.0]),
                              high=np.array([10.0]),indices=[0])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        #prob.driver.options['disp'] = False

        prob.setup(check=False)

        prob['z'][1] = 0.0

        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
    def test_driver_param_indices_snopt_force_fd_shift(self):
        """ Testt driver param indices with pyOptSparse and force_fd=True

        """

        prob = Problem()
        prob.root = SellarStateConnection()
        prob.root.fd_options['force_fd'] = True

        prob.driver.add_desvar('z', low=np.array([-10.0, -10.0]),
                              high=np.array([10.0, 10.0]), indices=[1])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        #prob.driver.options['disp'] = False

        prob.setup(check=False)

        prob['z'][1] = 0.0

        prob.run()

        J = prob.calc_gradient(['x', 'z'], ['obj'], mode='fd',
                              return_format='array')
        assert_rel_error(self, J[0][1], 1.78402, 1e-3)
    def test_Sellar_state_SLSQP(self):
        """ Baseline Sellar test case without specifying indices.
        """

        prob = Problem()
        prob.root = SellarStateConnection()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z', low=np.array([-10.0, 0.0]),
                             high=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
        def test_includes_and_excludes(self):
            prob = Problem()
            prob.root = ConvergeDiverge()
            prob.driver.add_recorder(self.recorder)
            self.recorder.options['includes'] = ['comp1.*']
            self.recorder.options['excludes'] = ["*.y2"]
            prob.setup(check=False)
            prob.run()

            expected_params = [
                ("comp1.x1", 2.0)
            ]
            expected_unknowns = [
                ("comp1.y1", 8.0)
            ]
            expected_resids = [
                ("comp1.y1", 0.0)
            ]

            expected = (expected_params, expected_unknowns, expected_resids)

            self.assertDatasetEquals(
                [(['Driver', (1,)], expected)],
                self.eps
            )
    def test_driver_param_indices_snopt(self):
        """ Test driver param indices with pyOptSparse and force_fd=False

        """

        prob = Problem()
        prob.root = SellarStateConnection()
        prob.root.fd_options['force_fd'] = False

        prob.driver = pyOptSparseDriver()

        prob.driver.add_desvar('z', low=np.array([-10.0]),
                              high=np.array([10.0]),indices=[0])
        prob.driver.add_desvar('x', low=0.0, high=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.setup(check=False)

        prob['z'][1] = 0.0

        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
Exemple #31
0
    def test_includes_and_excludes(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options['includes'] = ['comp1.*']
        self.recorder.options['excludes'] = ["*.y2"]
        self.recorder.options['record_params'] = True
        self.recorder.options['record_resids'] = True
        prob.setup(check=False)
        t0, t1 = run_problem(prob)
        prob.cleanup() # closes recorders

        coordinate = [0, 'Driver', (1,)]

        expected_params = [
            ("comp1.x1", 2.0)
        ]
        expected_unknowns = [
            ("comp1.y1", 8.0)
        ]
        expected_resids = [
            ("comp1.y1", 0.0)
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), expected_params, expected_unknowns, expected_resids),), self.eps)
Exemple #32
0
    def test_only_params_recorded(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options["record_params"] = True
        self.recorder.options["record_resids"] = False
        self.recorder.options["record_unknowns"] = False
        prob.setup(check=False)

        t0, t1 = run_problem(prob)
        prob.cleanup()  # closes recorders

        coordinate = ["Driver", (1,)]
        expected_params = [
            ("comp1.x1", 2.0),
            ("comp2.x1", 8.0),
            ("comp3.x1", 6.0),
            ("comp4.x1", 4.0),
            ("comp4.x2", 21.0),
            ("comp5.x1", 46.0),
            ("comp6.x1", -93.0),
            ("comp7.x1", 36.8),
            ("comp7.x2", -46.5),
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), expected_params, None, None),), self.eps)
Exemple #33
0
    def test_converge_diverge_groups(self):

        prob = Problem()
        prob.root = Group()
        prob.root.add('sub', ConvergeDivergeGroups())

        param_list = ['sub.p.x']
        unknown_list = ['sub.comp7.y1']

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['sub.comp7.y1']['sub.p.x'][0][0], -40.75,
                         1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['sub.comp7.y1']['sub.p.x'][0][0], -40.75,
                         1e-6)
Exemple #34
0
    def test_only_unknowns_recorded(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        prob.setup(check=False)

        t0, t1 = run_problem(prob)
        prob.cleanup() # closes recorders

        coordinate = [0, 'Driver', (1, )]

        expected_unknowns = [
            ("comp1.y1", 8.0),
            ("comp1.y2", 6.0),
            ("comp2.y1", 4.0),
            ("comp3.y1", 21.0),
            ("comp4.y1", 46.0),
            ("comp4.y2", -93.0),
            ("comp5.y1", 36.8),
            ("comp6.y1", -46.5),
            ("comp7.y1", -102.7),
            ("p.x", 2.0)
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), None, expected_unknowns, None),), self.eps)
    def test_metadata_recorded(self):
        prob = Problem(impl=impl)
        prob.root = FanInGrouped()

        rec = DumpRecorder(out=self.filename)
        rec.options['record_metadata'] = True
        rec.options['includes'] = ['p1.x1', 'p2.x2', 'comp3.y']
        prob.driver.add_recorder(rec)

        prob.setup(check=False)
        rec.close()

        with open(self.expected_filename, 'r') as dumpfile:
            params = iteritems(prob.root.params)
            unknowns = iteritems(prob.root.unknowns)

            self.assertEqual("Metadata:\n", dumpfile.readline())
            self.assertEqual("Params:\n", dumpfile.readline())

            for name, metadata in params:
                fmat = "  {0}: {1}\n".format(name, metadata)
                self.assertEqual(fmat, dumpfile.readline())

            self.assertEqual("Unknowns:\n", dumpfile.readline())

            for name, metadata in unknowns:
                fmat = "  {0}: {1}\n".format(name, metadata)
                self.assertEqual(fmat, dumpfile.readline())
    def test_fan_out_serial_sets(self):

        prob = Problem(impl=impl)
        prob.root = FanOutGrouped()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.sub.ln_solver = LinearGaussSeidel()

        # Parallel Groups
        prob.driver.add_desvar('p.x')
        prob.driver.add_constraint('c2.y', upper=0.0)
        prob.driver.add_constraint('c3.y', upper=0.0)

        prob.setup(check=False)
        prob.run()

        unknown_list = ['c2.y', 'c3.y']
        indep_list = ['p.x']

        J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
        assert_rel_error(self, J['c2.y']['p.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y']['p.x'][0][0], 15.0, 1e-6)

        J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
        assert_rel_error(self, J['c2.y']['p.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y']['p.x'][0][0], 15.0, 1e-6)
    def test_fan_in_serial_sets(self):

        prob = Problem(impl=impl)
        prob.root = FanInGrouped()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.sub.ln_solver = LinearGaussSeidel()

        # Parallel Groups
        prob.driver.add_desvar('p1.x1')
        prob.driver.add_desvar('p2.x2')
        prob.driver.add_objective('comp3.y')

        prob.setup(check=False)
        prob.run()

        indep_list = ['p1.x1', 'p2.x2']
        unknown_list = ['comp3.y']

        J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)

        J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
    def test_array2D_index_connection(self):
        group = Group()
        group.add('x_param', IndepVarComp('x', np.ones((2, 2))), promotes=['*'])
        sub = group.add('sub', Group(), promotes=['*'])
        sub.add('mycomp', ArrayComp2D(), promotes=['x', 'y'])
        group.add('obj', ExecComp('b = a'))
        group.connect('y', 'obj.a',  src_indices=[3])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = LinearGaussSeidel()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['obj.b'], mode='fwd', return_format='dict')
        Jbase = prob.root.sub.mycomp._jacobian_cache
        assert_rel_error(self, Jbase[('y', 'x')][3][0], J['obj.b']['x'][0][0], 1e-8)
        assert_rel_error(self, Jbase[('y', 'x')][3][1], J['obj.b']['x'][0][1], 1e-8)
        assert_rel_error(self, Jbase[('y', 'x')][3][2], J['obj.b']['x'][0][2], 1e-8)
        assert_rel_error(self, Jbase[('y', 'x')][3][3], J['obj.b']['x'][0][3], 1e-8)

        J = prob.calc_gradient(['x'], ['obj.b'], mode='rev', return_format='dict')
        Jbase = prob.root.sub.mycomp._jacobian_cache
        assert_rel_error(self, Jbase[('y', 'x')][3][0], J['obj.b']['x'][0][0], 1e-8)
        assert_rel_error(self, Jbase[('y', 'x')][3][1], J['obj.b']['x'][0][1], 1e-8)
        assert_rel_error(self, Jbase[('y', 'x')][3][2], J['obj.b']['x'][0][2], 1e-8)
        assert_rel_error(self, Jbase[('y', 'x')][3][3], J['obj.b']['x'][0][3], 1e-8)
Exemple #39
0
    def test_includes_and_excludes(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options['includes'] = ['comp1.*']
        self.recorder.options['excludes'] = ["*.y2"]
        self.recorder.options['record_params'] = True
        self.recorder.options['record_resids'] = True
        prob.setup(check=False)
        t0, t1 = run_problem(prob)
        prob.cleanup() # closes recorders

        coordinate = [0, 'Driver', (1,)]

        expected_params = [
            ("comp1.x1", 2.0)
        ]
        expected_unknowns = [
            ("comp1.y1", 8.0)
        ]
        expected_resids = [
            ("comp1.y1", 0.0)
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), expected_params, expected_unknowns, expected_resids),), self.eps)
Exemple #40
0
    def test_calc_gradient_multiple_params(self):
        prob = Problem()
        prob.root = FanIn()
        prob.setup(check=False)
        prob.run()

        param_list   = ['p1.x1', 'p2.x2']
        unknown_list = ['comp3.y']

        # check that calc_gradient returns proper dict value when mode is 'fwd'
        J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict')
        np.testing.assert_almost_equal(J['comp3.y']['p2.x2'], np.array([[ 35.]]))
        np.testing.assert_almost_equal(J['comp3.y']['p1.x1'], np.array([[ -6.]]))

        # check that calc_gradient returns proper array value when mode is 'fwd'
        J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='array')
        np.testing.assert_almost_equal(J, np.array([[-6., 35.]]))

        # check that calc_gradient returns proper dict value when mode is 'rev'
        J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict')
        np.testing.assert_almost_equal(J['comp3.y']['p2.x2'], np.array([[ 35.]]))
        np.testing.assert_almost_equal(J['comp3.y']['p1.x1'], np.array([[ -6.]]))

        # check that calc_gradient returns proper array value when mode is 'rev'
        J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='array')
        np.testing.assert_almost_equal(J, np.array([[-6., 35.]]))

        # check that calc_gradient returns proper dict value when mode is 'fd'
        J = prob.calc_gradient(param_list, unknown_list, mode='fd', return_format='dict')
        np.testing.assert_almost_equal(J['comp3.y']['p2.x2'], np.array([[ 35.]]))
        np.testing.assert_almost_equal(J['comp3.y']['p1.x1'], np.array([[ -6.]]))

        # check that calc_gradient returns proper array value when mode is 'fd'
        J = prob.calc_gradient(param_list, unknown_list, mode='fd', return_format='array')
        np.testing.assert_almost_equal(J, np.array([[-6., 35.]]))
Exemple #41
0
    def test_solver_record(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.root.nl_solver.add_recorder(self.recorder)
        self.recorder.options['record_params'] = True
        self.recorder.options['record_resids'] = True
        prob.setup(check=False)
        t0, t1 = run_problem(prob)
        prob.cleanup()  # closes recorders

        coordinate = [0, 'Driver', (1, ), "root", (1, )]

        expected_params = [("comp1.x1", 2.0), ("comp2.x1", 8.0),
                           ("comp3.x1", 6.0), ("comp4.x1", 4.0),
                           ("comp4.x2", 21.0), ("comp5.x1", 46.0),
                           ("comp6.x1", -93.0), ("comp7.x1", 36.8),
                           ("comp7.x2", -46.5)]
        expected_unknowns = [("comp1.y1", 8.0), ("comp1.y2", 6.0),
                             ("comp2.y1", 4.0), ("comp3.y1", 21.0),
                             ("comp4.y1", 46.0), ("comp4.y2", -93.0),
                             ("comp5.y1", 36.8), ("comp6.y1", -46.5),
                             ("comp7.y1", -102.7), ("p.x", 2.0)]
        expected_resids = [("comp1.y1", 0.0), ("comp1.y2", 0.0),
                           ("comp2.y1", 0.0), ("comp3.y1", 0.0),
                           ("comp4.y1", 0.0), ("comp4.y2", 0.0),
                           ("comp5.y1", 0.0), ("comp6.y1", 0.0),
                           ("comp7.y1", 0.0), ("p.x", 0.0)]

        self.assertIterationDataRecorded(
            ((coordinate, (t0, t1), expected_params, expected_unknowns,
              expected_resids), ), self.eps)
    def test_metadata_recorded(self):
        prob = Problem(impl=impl)
        prob.root = FanInGrouped()

        rec = DumpRecorder(out=self.filename)
        rec.options["record_metadata"] = True
        rec.options["includes"] = ["p1.x1", "p2.x2", "comp3.y"]
        prob.driver.add_recorder(rec)

        prob.setup(check=False)
        prob.cleanup()

        with open(self.expected_filename, "r") as dumpfile:
            params = iteritems(prob.root.params)
            unknowns = iteritems(prob.root.unknowns)

            self.assertEqual("Metadata:\n", dumpfile.readline())
            self.assertEqual("Params:\n", dumpfile.readline())

            for name, metadata in params:
                fmat = "  {0}: {1}\n".format(name, metadata)
                self.assertEqual(fmat, dumpfile.readline())

            self.assertEqual("Unknowns:\n", dumpfile.readline())

            for name, metadata in unknowns:
                fmat = "  {0}: {1}\n".format(name, metadata)
                self.assertEqual(fmat, dumpfile.readline())
Exemple #43
0
    def test_unsupported_array(self):

        top = Problem()
        top.root = Group()
        top.root.add('my_comp', VarComponent())

        top.setup(check=False)
        top.run()

        sb = Namelist(top.root.my_comp)

        top['my_comp.arrayvar'] = zeros([2, 2, 2], dtype=numpy_float32)

        sb.set_filename(self.filename)
        sb.add_group('Test')
        sb.add_var("arrayvar")

        try:
            sb.generate()
        except RuntimeError as err:
            self.assertEqual(str(err),
                             "Don't know how to handle array of" + \
                                           " 3 dimensions")
        else:
            self.fail('RuntimeError expected')
    def test_index_error_messages_con(self):

            prob = Problem()
            prob.root = Group()
            prob.root.fd_options['force_fd'] = True
            prob.root.ln_solver.options['mode'] = 'auto'

            prob.root.add('myparams', IndepVarComp('x', np.zeros(4)))
            prob.root.add('rosen', Rosenbrock(4))

            prob.root.connect('myparams.x', 'rosen.x')

            prob.driver = MySimpleDriver()
            prob.driver.add_desvar('myparams.x')
            prob.driver.add_constraint('rosen.xxx', upper=0.0, indices=[4])

            prob.setup(check=False)

            # Make sure we can't do this
            with self.assertRaises(IndexError) as cm:
                prob.run()

            msg = "Index for constraint 'rosen.xxx' is out of bounds. "
            msg += "Requested index: [4], "
            msg += "shape: (4,)."
            raised_error = str(cm.exception)
            raised_error = raised_error.replace('(4L,', '(4,')
            self.assertEqual(msg, raised_error)
Exemple #45
0
    def test_2Darray_read(self):

        namelist1 = "Testing\n" + \
                    "$GROUP\n" + \
                    "  arrayvartwod(1,1) = 12, 24, 36\n" + \
                    "  arrayvartwod(1,2) = 33, 66, 99\n" + \
                    "$END\n"

        outfile = open(self.filename, 'w')
        outfile.write(namelist1)
        outfile.close()

        top = Problem()
        top.root = Group()
        top.root.add('my_comp', VarComponent())

        top.setup(check=False)
        top.run()

        sb = Namelist(top.root.my_comp)
        sb.set_filename(self.filename)

        sb.parse_file()

        sb.load_model()

        # Unchanged
        self.assertEqual(top['my_comp.arrayvartwod'][0][0], 12)
        self.assertEqual(top['my_comp.arrayvartwod'][1][2], 99)
Exemple #46
0
    def test_2Darray_write(self):

        top = Problem()
        top.root = Group()
        top.root.add('my_comp', VarComponent())

        top.setup(check=False)
        top.run()

        sb = Namelist(top.root.my_comp)

        top['my_comp.arrayvar'] = zeros([3, 2], dtype=numpy_float32)
        top['my_comp.arrayvar'][0, 1] = 3.7
        top['my_comp.arrayvar'][2, 0] = 7.88

        sb.set_filename(self.filename)
        sb.add_group('Test')
        sb.add_var("arrayvar")

        sb.generate()

        f = open(self.filename, 'r')
        contents = f.read()

        compare = "\n" + \
                  "&Test\n" + \
                  "  arrayvar(1,1) = 0.0,  3.700000047683716, \n" + \
                  "arrayvar(1,2) = 0.0,  0.0, \n" + \
                  "arrayvar(1,3) = 7.880000114440918,  0.0, \n" + \
                  "/\n"

        self.assertEqual(contents, compare)
Exemple #47
0
    def test_read3(self):
        # Parse a single group in a deck with non-unique group names

        namelist1 = "Testing\n" + \
                    "$GROUP\n" + \
                    "  intvar = 99\n" + \
                    "$END\n" + \
                    "$GROUP\n" + \
                    "  floatvar = 3.5e-23\n" + \
                    "$END\n"

        outfile = open(self.filename, 'w')
        outfile.write(namelist1)
        outfile.close()

        top = Problem()
        top.root = Group()
        top.root.add('my_comp', VarComponent())

        top.setup(check=False)
        top.run()

        sb = Namelist(top.root.my_comp)
        sb.set_filename(self.filename)

        sb.parse_file()

        sb.load_model(single_group=1)

        # Unchanged
        self.assertEqual(top['my_comp.intvar'], 333)
        # Changed
        self.assertEqual(top['my_comp.floatvar'], 3.5e-23)
Exemple #48
0
    def test_only_resids_recorded(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options["record_params"] = False
        self.recorder.options["record_unknowns"] = False
        self.recorder.options["record_resids"] = True
        prob.setup(check=False)

        t0, t1 = run_problem(prob)
        prob.cleanup()  # closes recorders

        coordinate = ["Driver", (1,)]

        expected_resids = [
            ("comp1.y1", 0.0),
            ("comp1.y2", 0.0),
            ("comp2.y1", 0.0),
            ("comp3.y1", 0.0),
            ("comp4.y1", 0.0),
            ("comp4.y2", 0.0),
            ("comp5.y1", 0.0),
            ("comp6.y1", 0.0),
            ("comp7.y1", 0.0),
            ("p.x", 0.0),
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), None, None, expected_resids),), self.eps)
    def test_too_few_procs(self):
        size = 3
        group = Group()
        group.add('P', IndepVarComp('x', numpy.ones(size)))
        group.add('C1', DistribExecComp(['y=2.0*x'], arr_size=size,
                                           x=numpy.zeros(size),
                                           y=numpy.zeros(size)))
        group.add('C2', ExecComp(['z=3.0*y'], y=numpy.zeros(size),
                                           z=numpy.zeros(size)))

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.connect('P.x', 'C1.x')
        prob.root.connect('C1.y', 'C2.y')

        try:
            prob.setup(check=False)
        except Exception as err:
            self.assertEqual(str(err),
                             "This problem was given 1 MPI processes, "
                             "but it requires between 2 and 2.")
        else:
            if MPI:  # pragma: no cover
                self.fail("Exception expected")
    def test_src_indices_error(self):
        size = 3
        group = Group()
        group.add('P', IndepVarComp('x', numpy.ones(size)))
        group.add('C1', DistribExecComp(['y=2.0*x'], arr_size=size,
                                           x=numpy.zeros(size),
                                           y=numpy.zeros(size)))
        group.add('C2', ExecComp(['z=3.0*y'], y=numpy.zeros(size),
                                           z=numpy.zeros(size)))

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.connect('P.x', 'C1.x')
        prob.root.connect('C1.y', 'C2.y')

        prob.driver.add_desvar('P.x')
        prob.driver.add_objective('C1.y')

        try:
            prob.setup(check=False)
        except Exception as err:
            self.assertEqual(str(err),
               "'C1.y' is a distributed variable and may not be used as a "
               "design var, objective, or constraint.")
        else:
            if MPI:  # pragma: no cover
                self.fail("Exception expected")
    def test_array_values(self):
        prob = Problem()
        prob.root = Group()
        prob.root.add('pc',
                      ParamComp('x', np.zeros((2, 3)), units='degC'),
                      promotes=['x'])
        prob.root.add('uc',
                      UnitComp(shape=(2, 3),
                               param_name='x',
                               out_name='x_out',
                               units='degF'),
                      promotes=['x', 'x_out'])
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['x_out'],
                         np.array([[32., 32., 32.], [32., 32., 32.]]), 1e-6)

        param_list = ['x']
        unknown_list = ['x_out']

        # Forward Mode
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['x_out']['x'], 1.8 * np.eye(6), 1e-6)

        # Reverse Mode
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['x_out']['x'], 1.8 * np.eye(6), 1e-6)
Exemple #52
0
    def test_only_unknowns_recorded(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        prob.setup(check=False)

        t0, t1 = run_problem(prob)
        prob.cleanup()  # closes recorders

        coordinate = ["Driver", (1,)]

        expected_unknowns = [
            ("comp1.y1", 8.0),
            ("comp1.y2", 6.0),
            ("comp2.y1", 4.0),
            ("comp3.y1", 21.0),
            ("comp4.y1", 46.0),
            ("comp4.y2", -93.0),
            ("comp5.y1", 36.8),
            ("comp6.y1", -46.5),
            ("comp7.y1", -102.7),
            ("p.x", 2.0),
        ]

        self.assertIterationDataRecorded(((coordinate, (t0, t1), None, expected_unknowns, None),), self.eps)
Exemple #53
0
    def test_calc_gradient_multiple_params(self):
        prob = Problem()
        prob.root = FanIn()
        prob.setup(check=False)
        prob.run()

        param_list = ['p1.x1', 'p2.x2']
        unknown_list = ['comp3.y']

        # check that calc_gradient returns proper dict value when mode is 'fwd'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        np.testing.assert_almost_equal(J['comp3.y']['p2.x2'],
                                       np.array([[35.]]))
        np.testing.assert_almost_equal(J['comp3.y']['p1.x1'],
                                       np.array([[-6.]]))

        # check that calc_gradient returns proper array value when mode is 'fwd'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='array')
        np.testing.assert_almost_equal(J, np.array([[-6., 35.]]))

        # check that calc_gradient returns proper dict value when mode is 'rev'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        np.testing.assert_almost_equal(J['comp3.y']['p2.x2'],
                                       np.array([[35.]]))
        np.testing.assert_almost_equal(J['comp3.y']['p1.x1'],
                                       np.array([[-6.]]))

        # check that calc_gradient returns proper array value when mode is 'rev'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='array')
        np.testing.assert_almost_equal(J, np.array([[-6., 35.]]))

        # check that calc_gradient returns proper dict value when mode is 'fd'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='dict')
        np.testing.assert_almost_equal(J['comp3.y']['p2.x2'],
                                       np.array([[35.]]))
        np.testing.assert_almost_equal(J['comp3.y']['p1.x1'],
                                       np.array([[-6.]]))

        # check that calc_gradient returns proper array value when mode is 'fd'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='array')
        np.testing.assert_almost_equal(J, np.array([[-6., 35.]]))
Exemple #54
0
    def test_subsolver_doesnt_record_metadata(self):
        prob = Problem()
        prob.root = ExampleGroup()
        prob.root.G2.G1.nl_solver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        prob.setup(check=False)
        prob.cleanup()  # closes recorders

        self.assertMetadataRecorded(None)
Exemple #55
0
    def test_driver_doesnt_record_metadata(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        prob.setup(check=False)
        prob.cleanup()  # closes recorders

        self.assertMetadataRecorded(None)
Exemple #56
0
    def test_root_solver_doesnt_record_metadata(self):
        prob = Problem()
        prob.root = ConvergeDiverge()
        prob.root.nl_solver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = False
        prob.setup(check=False)
        self.recorder.close()

        self.assertMetadataRecorded(None)
Exemple #57
0
    def test_unknown_vec(self):

        top = Problem()
        top.root = Group()
        top.root.add('comp', ArrayComp2D(), promotes=['x', 'y'])
        top.root.add('p1',
                     IndepVarComp('x', np.array([[1.0, 2.0], [3.0, 4.0]])),
                     promotes=['x'])
        top.root.add('comp2', SimpleComp())
        top.root.add('p2', IndepVarComp('x', 3.0))
        top.root.connect('p2.x', 'comp2.x')

        top.setup(check=False)
        top.run()

        unknowns = ComplexStepSrcVecWrapper(top.root.comp.unknowns)

        # Unknowns are always complex
        y = unknowns['y']
        self.assertTrue(y.dtype == np.complex)
        self.assertEquals(y[0, 1], 46.0 + 0j)

        # Set an unknown
        unknowns['y'][0, 1] = 13.0 + 17.0j
        self.assertEquals(unknowns['y'][0, 1], 13.0 + 17.0j)

        # Extract flat var
        cval = unknowns.flat('y')
        self.assertEquals(cval[1], 13.0 + 17.0j)
        self.assertEquals(cval.shape[0], 4)

        unknowns = ComplexStepSrcVecWrapper(top.root.comp2.unknowns)

        # Unknowns are always complex
        y = unknowns['y']
        self.assertTrue(y.dtype == np.complex)
        self.assertEquals(y, 6.0 + 0j)

        # Set an unknown
        unknowns['y'] = 13.0 + 17.0j
        self.assertEquals(unknowns['y'], 13.0 + 17.0j)

        # Extract flat var
        cval = unknowns.flat('y')
        self.assertEquals(cval, 13.0 + 17.0j)
        self.assertEquals(cval.shape[0], 1)

        # Make sure all other functions work for coverage
        self.assertEquals(len(unknowns), 1)
        self.assertTrue('y' in unknowns)
        plist = [z for z in unknowns]
        self.assertEquals(plist, ['y'])
        self.assertEquals(unknowns.keys(), top.root.comp2.unknowns.keys())
        self.assertEquals(unknowns.metadata('y'),
                          top.root.comp2.unknowns.metadata('y'))
        plist1 = [z for z in unknowns.iterkeys()]
        plist2 = [z for z in top.root.comp2.unknowns.iterkeys()]
Exemple #58
0
    def test_multilevel_record(self):
        # FIXME: this test fails with the csv recorder
        self.recorder.close()
        raise unittest.SkipTest('This is not supported by the csv recorder yet.')

        prob = Problem()
        prob.root = ExampleGroup()
        prob.root.G2.G1.nl_solver.add_recorder(self.recorder)
        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_params'] = True
        self.recorder.options['record_resids'] = True
        prob.setup(check=False)
        t0, t1 = run_problem(prob)
        self.recorder.close()

        solver_coordinate = ['Driver', (1,), "root", (1,), "G2", (1,), "G1", (1,)]

        g1_expected_params = [
            ("C2.x", 5.0)
        ]
        g1_expected_unknowns = [
            ("C2.y", 10.0)
        ]
        g1_expected_resids = [
            ("C2.y", 0.0)
        ]

        # g1_expected = (g1_expected_params, g1_expected_unknowns, g1_expected_resids)

        driver_coordinate = ['Driver', (1,)]

        driver_expected_params = [
            ("G3.C3.x", 10.0)
        ]

        driver_expected_unknowns = [
            ("G2.C1.x", 5.0),
            ("G2.G1.C2.y", 10.0),
            ("G3.C3.y", 20.0),
            ("G3.C4.y", 40.0),
        ]

        driver_expected_resids = [
            ("G2.C1.x", 0.0),
            ("G2.G1.C2.y", 0.0),
            ("G3.C3.y", 0.0),
            ("G3.C4.y", 0.0),
        ]

        expected = []
        expected.append((solver_coordinate, (t0, t1), g1_expected_params, g1_expected_unknowns, g1_expected_resids))
        expected.append((driver_coordinate, (t0, t1), driver_expected_params, driver_expected_unknowns, driver_expected_resids))

        self.assertIterationDataRecorded(expected, self.eps)
    def test_sellar_derivs(self):

        prob = Problem()
        prob.root = SellarDerivatives()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.ln_solver.options['maxiter'] = 4

        prob.root.nl_solver.options['atol'] = 1e-12
        prob.setup(check=False)
        prob.run()

        # Just make sure we are at the right answer
        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        param_list = ['x', 'z']
        param_list = ['x']
        unknown_list = ['obj', 'con1', 'con2']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421 ])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict')
        print(J)
        #for key1, val1 in Jbase.items():
            #for key2, val2 in val1.items():
                #assert_rel_error(self, J[key1][key2], val2, .00001)

        J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict')
        print(J)
        #for key1, val1 in Jbase.items():
            #for key2, val2 in val1.items():
                #assert_rel_error(self, J[key1][key2], val2, .00001)

        prob.root.fd_options['form'] = 'central'
        J = prob.calc_gradient(param_list, unknown_list, mode='fd', return_format='dict')
        print(J)
        #for key1, val1 in Jbase.items():
            #for key2, val2 in val1.items():
                #assert_rel_error(self, J[key1][key2], val2, .00001)

        # Obviously this test doesn't do much right now, but I need to verify
        # we don't get a keyerror here.
        J = prob.calc_gradient(param_list, unknown_list, mode='fd', return_format='array')
Exemple #60
0
    def test_subsolver_records_metadata(self):
        prob = Problem()
        prob.root = ExampleGroup()
        prob.root.G2.G1.nl_solver.add_recorder(self.recorder)
        self.recorder.options['record_metadata'] = True
        prob.setup(check=False)
        prob.cleanup() # closes recorders

        expected_params = list(iteritems(prob.root.params))
        expected_unknowns = list(iteritems(prob.root.unknowns))
        expected_resids = list(iteritems(prob.root.resids))

        self.assertMetadataRecorded((expected_params, expected_unknowns, expected_resids))