def test_add_duplicate(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_desvar('z', lower=-100.0, upper=100.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)

        # Add duplicate desvar
        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_desvar('z', lower=-50.0, upper=49.0)

        msg = "Desvar 'z' already exists."
        raised_error = str(cm.exception)
        self.assertEqual(msg, raised_error)

        # Add duplicate constraint
        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', upper=0.0)

        msg = "Constraint 'con1' already exists."
        raised_error = str(cm.exception)
        self.assertEqual(msg, raised_error)

        # Add duplicate objective
        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_objective('obj')

        msg = "Objective 'obj' already exists."
        raised_error = str(cm.exception)
        self.assertEqual(msg, raised_error)
Exemple #2
0
    def test_Sellar_SLSQP(self):

        prob = Problem()
        prob.root = SellarDerivatives()

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1.0e-8

        prob.driver.add_desvar('z',
                               lower=np.array([-10.0, 0.0]),
                               upper=np.array([10.0, 10.0]))
        prob.driver.add_desvar('x', lower=0.0, upper=10.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)
        prob.driver.options['disp'] = False

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['z'][0], 1.9776, 1e-3)
        assert_rel_error(self, prob['z'][1], 0.0, 1e-3)
        assert_rel_error(self, prob['x'], 0.0, 1e-3)
Exemple #3
0
    def test_eq_ineq_error_messages(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()

        # Don't try this at home, kids
        prob.driver.supports['equality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', ctype='eq')

        self.assertEqual(
            str(cm.exception),
            "Driver does not support equality constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['inequality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', ctype='ineq')

        self.assertEqual(
            str(cm.exception),
            "Driver does not support inequality constraint 'con1'.")
Exemple #4
0
    def test_sellar_derivs(self):

        prob = Problem()
        prob.root = SellarDerivatives()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.ln_solver.options['maxiter'] = 10
        prob.root.ln_solver.options['atol'] = 1e-12
        prob.root.ln_solver.options['rtol'] = 1e-12
        #prob.root.ln_solver.options['iprint'] = 1

        prob.root.nl_solver.options['atol'] = 1e-12
        prob.setup(check=False)
        prob.run()

        # Just make sure we are at the right answer
        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        indep_list = ['x', 'z']
        unknown_list = ['obj', 'con1', 'con2']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421 ])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J[key1][key2], val2, .00001)

        J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J[key1][key2], val2, .00001)

        # Cheat a bit so I can twiddle mode
        OptionsDictionary.locked = False

        prob.root.fd_options['form'] = 'central'
        J = prob.calc_gradient(indep_list, unknown_list, mode='fd', return_format='dict')
        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J[key1][key2], val2, .00001)

        # Obviously this test doesn't do much right now, but I need to verify
        # we don't get a keyerror here.
        J = prob.calc_gradient(indep_list, unknown_list, mode='fd', return_format='array')
    def test_eq_ineq_error_messages(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1')

        self.assertEqual(
            str(cm.exception),
            "Constraint 'con1' needs to define lower, upper, or equals.")

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1',
                                       lower=0.0,
                                       upper=1.1,
                                       equals=2.2)

        self.assertEqual(
            str(cm.exception),
            "Constraint 'con1' cannot be both equality and inequality.")

        # Don't try this at home, kids
        prob.driver.supports['two_sided_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', lower=0.0, upper=1.1)

        self.assertEqual(str(cm.exception),
                         "Driver does not support 2-sided constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['equality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', equals=0.0)

        self.assertEqual(
            str(cm.exception),
            "Driver does not support equality constraint 'con1'.")

        # Don't try this at home, kids
        prob.driver.supports['inequality_constraints'] = False

        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_constraint('con1', upper=0.0)

        self.assertEqual(
            str(cm.exception),
            "Driver does not support inequality constraint 'con1'.")
    def test_no_desvar_bound(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_desvar('z')

        prob.setup(check=False)

        meta = prob.driver._desvars['z']
        self.assertLess(meta['lower'], -1e12)
        self.assertGreater(meta['upper'], 1e12)
Exemple #7
0
    def test_sellar_derivs(self):

        prob = Problem()
        prob.root = SellarDerivatives()
        prob.root.nl_solver = Newton()

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        # Make sure we aren't iterating like crazy
        self.assertLess(prob.root.nl_solver.iter_count, 8)
Exemple #8
0
    def test_sellar_derivs_with_Lin_GS(self):

        prob = Problem()
        prob.root = SellarDerivatives()
        prob.root.nl_solver = Newton()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.ln_solver.options['maxiter'] = 2

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        # Make sure we aren't iterating like crazy
        self.assertLess(prob.root.nl_solver.iter_count, 8)
    def test_unsupported_multiple_obj(self):
        prob = Problem()
        prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_desvar('z', lower=-100.0, upper=100.0)

        prob.driver.add_objective('obj')

        # Add duplicate objective
        with self.assertRaises(RuntimeError) as cm:
            prob.driver.add_objective('x')

        msg = "Attempted to add multiple objectives to a driver that does not " \
              "support multiple objectives."
        raised_error = str(cm.exception)
        self.assertEqual(msg, raised_error)
    def test_mydriver(self):

        prob = Problem()
        root = prob.root = SellarDerivatives()

        prob.driver = MySimpleDriver()
        prob.driver.add_desvar('z', lower=-100.0, upper=100.0)

        prob.driver.add_objective('obj')
        prob.driver.add_constraint('con1', upper=0.0)
        prob.driver.add_constraint('con2', upper=0.0)

        prob.setup(check=False)
        prob.run()

        obj = prob['obj']
        self.assertLess(obj, 28.0)
Exemple #11
0
    def test_sellar_analysis_error(self):

        prob = Problem()
        prob.root = SellarDerivatives()
        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.ln_solver.options['maxiter'] = 2
        prob.root.ln_solver.options['err_on_maxiter'] = True
        prob.root.ln_solver.options['atol'] = 1e-12
        prob.root.ln_solver.options['rtol'] = 1e-12

        prob.setup(check=False)
        prob.run()

        # Just make sure we are at the right answer
        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        indep_list = ['x', 'z']
        unknown_list = ['obj', 'con1', 'con2']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        try:
            J = prob.calc_gradient(indep_list,
                                   unknown_list,
                                   mode='fwd',
                                   return_format='dict')
        except AnalysisError as err:
            self.assertEqual(
                str(err),
                "Solve in '': LinearGaussSeidel FAILED to converge after 2 iterations"
            )
        else:
            self.fail("expected AnalysisError")
Exemple #12
0
    def test_sellar_derivs(self):

        prob = Problem()
        prob.root = SellarDerivatives()
        prob.root.nl_solver = Newton()

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        # Make sure we aren't iterating like crazy
        self.assertLess(prob.root.nl_solver.iter_count, 8)

        # Make sure we only call apply_linear on 'heads'
        nd1 = prob.root.d1.execution_count
        nd2 = prob.root.d2.execution_count
        if prob.root.d1._run_apply == True:
            self.assertEqual(nd1, 2 * nd2)
        else:
            self.assertEqual(2 * nd1, nd2)