Exemple #1
0
    def test_distribcomp_list_feature(self):

        size = 15

        model = om.Group()
        model.add_subsystem("indep", om.IndepVarComp('x', np.zeros(size)))
        model.add_subsystem("C2", DistribComp(size=size))
        model.add_subsystem("C3", Summer(size=size))

        model.connect('indep.x', 'C2.invec')
        model.connect('C2.outvec', 'C3.invec', src_indices=om.slicer[:])

        prob = om.Problem(model)
        prob.setup()

        # prior to model execution, the global shape of a distributed variable is not available
        # and only the local portion of the value is available
        model.C2.list_inputs(hierarchical=False, shape=True, global_shape=True, print_arrays=True)
        model.C2.list_outputs(hierarchical=False, shape=True, global_shape=True, print_arrays=True)

        prob['indep.x'] = np.ones(size)
        prob.run_model()

        # after model execution, the global shape of a distributed variable is available
        # and the complete global value is available
        model.C2.list_inputs(hierarchical=False, shape=True, global_shape=True, print_arrays=True)
        model.C2.list_outputs(hierarchical=False, shape=True, global_shape=True, print_arrays=True)

        # note that the shape of the input variable for the non-distributed Summer component
        # is different on each processor, use the all_procs argument to display on all processors
        model.C3.list_inputs(hierarchical=False, shape=True, global_shape=True, print_arrays=True, all_procs=True)

        assert_near_equal(prob['C3.sum'], -5.)
    def test_distribcomp_feature(self):

        size = 15

        model = om.Group()

        # Distributed component "C2" requires an IndepVarComp to supply inputs.
        model.add_subsystem("indep", om.IndepVarComp('x', np.zeros(size)))
        model.add_subsystem("C2", DistribComp(size=size))
        model.add_subsystem("C3", Summer(size=size))

        model.connect('indep.x', 'C2.invec')
        # to copy the full distributed output C2.outvec into C3.invec on all procs, we need
        # to specify src_indices=om.slicer[:]
        model.connect('C2.outvec', 'C3.invec', src_indices=om.slicer[:])

        prob = om.Problem(model)
        prob.setup()

        prob.set_val('indep.x', np.ones(size))
        prob.run_model()

        assert_near_equal(prob.get_val('C2.invec'),
                          np.ones((8,)) if model.comm.rank == 0 else np.ones((7,)))
        assert_near_equal(prob.get_val('C2.outvec'),
                          2*np.ones((8,)) if model.comm.rank == 0 else -3*np.ones((7,)))
        assert_near_equal(prob.get_val('C3.sum'), -5.)
Exemple #3
0
    def test_distribcomp_feature(self):
        import numpy as np
        import openmdao.api as om
        from openmdao.test_suite.components.distributed_components import DistribComp, Summer

        size = 15

        model = om.Group()
        model.add_subsystem("indep", om.IndepVarComp('x', np.zeros(size)))
        model.add_subsystem("C2", DistribComp(size=size))
        model.add_subsystem("C3", Summer(size=size))

        model.connect('indep.x', 'C2.invec')
        model.connect('C2.outvec', 'C3.invec')

        prob = om.Problem(model)
        prob.setup()

        prob['indep.x'] = np.ones(size)
        prob.run_model()

        assert_near_equal(prob['C2.invec'],
                          np.ones((8,)) if model.comm.rank == 0 else np.ones((7,)))
        assert_near_equal(prob['C2.outvec'],
                          2*np.ones((8,)) if model.comm.rank == 0 else -3*np.ones((7,)))
        assert_near_equal(prob['C3.sum'], -5.)
Exemple #4
0
    def test_distributed_array_list_vars(self):

        size = 100  # how many items in the array

        prob = om.Problem()

        prob.model.add_subsystem('des_vars', om.IndepVarComp('x', np.ones(size)), promotes=['x'])
        prob.model.add_subsystem('plus', DistributedAdder(size=size), promotes=['x', 'y'])
        prob.model.add_subsystem('summer', Summer(size=size), promotes_outputs=['sum'])
        prob.model.promotes('summer', inputs=[('invec', 'y')], src_indices=om.slicer[:])

        prob.setup(force_alloc_complex=True)  # force complex array storage to detect mpi bug

        prob['x'] = np.arange(size)

        prob.run_driver()

        stream = StringIO()
        with multi_proc_exception_check(prob.comm):
            inputs = sorted(prob.model.list_inputs(values=True, print_arrays=True, out_stream=stream))
            if prob.comm.rank:
                self.assertEqual(inputs, [])
            else:
                self.assertEqual(inputs[0][0], 'plus.x')
                self.assertEqual(inputs[1][0], 'summer.invec')
                self.assertEqual(inputs[0][1]['val'].size, 100)
                self.assertEqual(inputs[1][1]['val'].size, 100)

            text = stream.getvalue()
            if prob.comm.rank:  # Only rank 0 prints
                self.assertEqual(len(text), 0)
            else:
                self.assertEqual(text.count('val'), 3)
                self.assertEqual(text.count('\nplus'), 1)
                self.assertEqual(text.count('\n  x'), 1)
                self.assertEqual(text.count('\nsummer'), 1)
                self.assertEqual(text.count('\n  invec'), 1)
                # make sure all the arrays written have 100 elements in them
                self.assertEqual(len(text.split('[')[1].split(']')[0].split()), 100)
                self.assertEqual(len(text.split('[')[2].split(']')[0].split()), 100)

        stream = StringIO()
        with multi_proc_exception_check(prob.comm):
            outputs = sorted(prob.model.list_outputs(values=True,
                                                     units=True,
                                                     shape=True,
                                                     bounds=True,
                                                     residuals=True,
                                                     scaling=True,
                                                     hierarchical=True,
                                                     print_arrays=True,
                                                     out_stream=stream))
            if prob.comm.rank:
                self.assertEqual(outputs, [])
            else:
                self.assertEqual(outputs[0][0], 'des_vars.x')
                self.assertEqual(outputs[1][0], 'plus.y')
                self.assertEqual(outputs[2][0], 'summer.sum')
                self.assertEqual(outputs[0][1]['val'].size, 100)
                self.assertEqual(outputs[1][1]['val'].size, 100)
                self.assertEqual(outputs[2][1]['val'].size, 1)

            text = stream.getvalue()
            if prob.comm.rank:  # Only rank 0 prints
                self.assertEqual(len(text), 0)
            else:
                self.assertEqual(text.count('val'), 3)
                self.assertEqual(text.count('\ndes_vars'), 1)
                self.assertEqual(text.count('\n  x'), 1)
                self.assertEqual(text.count('\nplus'), 1)
                self.assertEqual(text.count('\n  y'), 1)
                self.assertEqual(text.count('\nsummer'), 1)
                self.assertEqual(text.count('\n  sum'), 1)
                # make sure all the arrays written have 100 elements in them
                self.assertEqual(len(text.split('[')[1].split(']')[0].split()), 100)
                self.assertEqual(len(text.split('[')[2].split(']')[0].split()), 100)
                self.assertEqual(len(text.split('[')[3].split(']')[0].split()), 100)
                self.assertEqual(len(text.split('[')[4].split(']')[0].split()), 100)
Exemple #5
0
    def test_distribcomp_list_vars(self):
        print_opts = {'linewidth': 1024}

        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            print_opts['legacy'] = '1.13'

        size = 15

        model = om.Group()
        model.add_subsystem("indep", om.IndepVarComp('x', np.zeros(size)))
        model.add_subsystem("C2", DistribComp(size=size))
        model.add_subsystem("C3", Summer(size=size))

        model.connect('indep.x', 'C2.invec')
        model.connect('C2.outvec', 'C3.invec', src_indices=om.slicer[:])

        prob = om.Problem(model)
        prob.setup()

        # prior to model execution, the global shape of a distributed variable is not available
        # and only the local portion of the value is available
        stream = StringIO()
        with printoptions(**print_opts):
            model.C2.list_inputs(hierarchical=False, shape=True, global_shape=True,
                                 print_arrays=True, out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Input(s) in 'C2'",
                '',
                'varname  val              shape  global_shape',
                '-------  ---------------  -----  ------------',
                'invec    |3.87298334621|  (8,)   (15,)',
                '         val:',
                '         array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])'
            ]

            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(remove_whitespace(text[i]), remove_whitespace(line),
                                     '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        stream = StringIO()
        with printoptions(**print_opts):
            model.C2.list_outputs(hierarchical=False, shape=True, global_shape=True,
                                  print_arrays=True, out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Explicit Output(s) in 'C2'",
                '',
                'varname  val              shape  global_shape',
                '-------  ---------------  -----  ------------',
                'outvec   |3.87298334621|  (8,)   (15,)',
                '         val:',
                '         array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])'
            ]

            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(remove_whitespace(text[i]), remove_whitespace(line),
                                     '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        # run the model
        prob['indep.x'] = np.ones(size)
        prob.run_model()

        # after model execution, the global shape of a distributed variable is available
        # and the complete global value is available
        stream = StringIO()
        with printoptions(**print_opts):
            model.C2.list_inputs(hierarchical=False, shape=True, global_shape=True,
                                 print_arrays=True, out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Input(s) in 'C2'",
                '',
                'varname  val              shape  global_shape',
                '-------  ---------------  -----  ------------',
                'invec    |3.87298334621|  (8,)   (15,)',
                '         val:',
                '         array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])'
            ]
            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(remove_whitespace(text[i]), remove_whitespace(line),
                                     '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        stream = StringIO()
        with printoptions(**print_opts):
            model.C2.list_outputs(hierarchical=False, shape=True, global_shape=True,
                                  print_arrays=True, out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Explicit Output(s) in 'C2'",
                '',
                'varname  val             shape  global_shape',
                '-------  --------------  -----  ------------',
                'outvec   |9.74679434481|  (8,)   (15,)',
                '         val:',
                '         array([ 2.,  2.,  2.,  2.,  2.,  2.,  2.,  2., -3., -3., -3., -3., -3., -3., -3.])'
            ]
            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(remove_whitespace(text[i]), remove_whitespace(line),
                                     '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        stream = StringIO()
        with printoptions(**print_opts):
            model.C3.list_inputs(hierarchical=False, shape=True, global_shape=True, all_procs=True,
                                 print_arrays=True, out_stream=stream)

        text = stream.getvalue().split('\n')

        print('\n'.join(text))

        norm = '|9.74679434481|'
        shape = (15,)
        value = '[2., 2., 2., 2., 2., 2., 2., 2., -3., -3., -3., -3., -3., -3., -3.]'

        expected = [
            "1 Input(s) in 'C3'",
            '',
            'varname  val                  shape  global_shape',
            '-------  -------------------  -----  ------------',
            'invec  {}  {}   {}        '.format(norm, shape, shape),
            '         val:',
            '         array({})'.format(value),
        ]

        for i, line in enumerate(expected):
            if line and not line.startswith('-'):
                self.assertEqual(remove_whitespace(text[i]), remove_whitespace(line),
                                 '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        assert_near_equal(prob['C3.sum'], -5.)
    def test_distributed_array_list_vars(self):

        size = 100  # how many items in the array

        prob = om.Problem()

        prob.model.add_subsystem('des_vars',
                                 om.IndepVarComp('x', np.ones(size)),
                                 promotes=['x'])
        prob.model.add_subsystem('plus',
                                 DistributedAdder(size=size),
                                 promotes=['x', 'y'])
        prob.model.add_subsystem('summer',
                                 Summer(size=size),
                                 promotes=['y', 'sum'])

        prob.setup()

        prob['x'] = np.arange(size)

        prob.run_driver()

        stream = cStringIO()
        inputs = sorted(
            prob.model.list_inputs(values=True,
                                   print_arrays=True,
                                   out_stream=stream))
        self.assertEqual(inputs[0][0], 'plus.x')
        self.assertEqual(inputs[1][0], 'summer.y')
        self.assertEqual(inputs[0][1]['value'].size,
                         50)  # should only return half that is local
        self.assertEqual(inputs[1][1]['value'].size, 100)

        text = stream.getvalue()
        if prob.comm.rank:  # Only rank 0 prints
            self.assertEqual(len(text), 0)
        else:
            self.assertEqual(text.count('value'), 3)
            self.assertEqual(text.count('\nmodel'), 1)
            self.assertEqual(text.count('\n  plus'), 1)
            self.assertEqual(text.count('\n    x'), 1)
            self.assertEqual(text.count('\n  summer'), 1)
            self.assertEqual(text.count('\n    y'), 1)
            # make sure all the arrays written have 100 elements in them
            self.assertEqual(len(text.split('[')[1].split(']')[0].split()),
                             100)
            self.assertEqual(len(text.split('[')[2].split(']')[0].split()),
                             100)

        stream = cStringIO()
        outputs = sorted(
            prob.model.list_outputs(values=True,
                                    units=True,
                                    shape=True,
                                    bounds=True,
                                    residuals=True,
                                    scaling=True,
                                    hierarchical=True,
                                    print_arrays=True,
                                    out_stream=stream))
        self.assertEqual(outputs[0][0], 'des_vars.x')
        self.assertEqual(outputs[1][0], 'plus.y')
        self.assertEqual(outputs[2][0], 'summer.sum')
        self.assertEqual(outputs[0][1]['value'].size, 100)
        self.assertEqual(outputs[1][1]['value'].size, 50)
        self.assertEqual(outputs[2][1]['value'].size, 1)

        text = stream.getvalue()
        if prob.comm.rank:  # Only rank 0 prints
            self.assertEqual(len(text), 0)
        else:
            self.assertEqual(text.count('value'), 3)
            self.assertEqual(text.count('\n  des_vars'), 1)
            self.assertEqual(text.count('\n    x'), 1)
            self.assertEqual(text.count('\n  plus'), 1)
            self.assertEqual(text.count('\n    y'), 1)
            self.assertEqual(text.count('\n  summer'), 1)
            self.assertEqual(text.count('\n    sum'), 1)
            # make sure all the arrays written have 100 elements in them
            self.assertEqual(len(text.split('[')[1].split(']')[0].split()),
                             100)
            self.assertEqual(len(text.split('[')[2].split(']')[0].split()),
                             100)
            self.assertEqual(len(text.split('[')[3].split(']')[0].split()),
                             100)
            self.assertEqual(len(text.split('[')[4].split(']')[0].split()),
                             100)
    def test_distribcomp_list_vars(self):
        from openmdao.test_suite.components.distributed_components import DistribComp, Summer

        print_opts = {'linewidth': 1024}

        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            print_opts['legacy'] = '1.13'

        size = 15

        model = om.Group()
        model.add_subsystem("indep", om.IndepVarComp('x', np.zeros(size)))
        model.add_subsystem("C2", DistribComp(size=size))
        model.add_subsystem("C3", Summer(size=size))

        model.connect('indep.x', 'C2.invec')
        model.connect('C2.outvec', 'C3.invec')

        prob = om.Problem(model)
        prob.setup()

        # prior to model execution, the global shape of a distributed variable is not available
        # and only the local portion of the value is available
        stream = cStringIO()
        with printoptions(**print_opts):
            model.C2.list_inputs(hierarchical=False,
                                 shape=True,
                                 global_shape=True,
                                 print_arrays=True,
                                 out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Input(s) in 'C2'", '------------------', '',
                'varname  value            shape  global_shape',
                '-------  ---------------  -----  ------------',
                'invec    |2.82842712475|  (8,)   Unavailable ',
                '         value:',
                '         array([1., 1., 1., 1., 1., 1., 1., 1.])'
            ]

            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(
                        remove_whitespace(text[i]), remove_whitespace(line),
                        '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        stream = cStringIO()
        with printoptions(**print_opts):
            model.C2.list_outputs(hierarchical=False,
                                  shape=True,
                                  global_shape=True,
                                  print_arrays=True,
                                  out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Explicit Output(s) in 'C2'", '----------------------------',
                '', 'varname  value            shape  global_shape',
                '-------  ---------------  -----  ------------',
                'outvec   |2.82842712475|  (8,)   Unavailable ',
                '         value:',
                '         array([1., 1., 1., 1., 1., 1., 1., 1.])'
            ]

            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(
                        remove_whitespace(text[i]), remove_whitespace(line),
                        '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        # run the model
        prob['indep.x'] = np.ones(size)
        prob.run_model()

        # after model execution, the global shape of a distributed variable is available
        # and the complete global value is available
        stream = cStringIO()
        with printoptions(**print_opts):
            model.C2.list_inputs(hierarchical=False,
                                 shape=True,
                                 global_shape=True,
                                 print_arrays=True,
                                 out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Input(s) in 'C2'", '------------------', '',
                'varname   value            shape  global_shape',
                '--------  ---------------  -----  ------------',
                'C2.invec  |3.87298334621|  (8,)   (15,)       ',
                '          value:',
                '          array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])'
            ]
            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(
                        remove_whitespace(text[i]), remove_whitespace(line),
                        '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        stream = cStringIO()
        with printoptions(**print_opts):
            model.C2.list_outputs(hierarchical=False,
                                  shape=True,
                                  global_shape=True,
                                  print_arrays=True,
                                  out_stream=stream)

        if prob.comm.rank == 0:
            text = stream.getvalue().split('\n')

            expected = [
                "1 Explicit Output(s) in 'C2'", '----------------------------',
                '', 'varname    value           shape  global_shape',
                '---------  --------------  -----  ------------',
                'C2.outvec  |9.74679434481|  (8,)   (15,)       ',
                '           value:',
                '           array([ 2.,  2.,  2.,  2.,  2.,  2.,  2.,  2., -3., -3., -3., -3., -3., -3., -3.])'
            ]
            for i, line in enumerate(expected):
                if line and not line.startswith('-'):
                    self.assertEqual(
                        remove_whitespace(text[i]), remove_whitespace(line),
                        '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        # note that the shape of the input variable for the non-distributed Summer component
        # is different on each processor, use the all_procs argument to display on all processors
        stream = cStringIO()
        with printoptions(**print_opts):
            model.C3.list_inputs(hierarchical=False,
                                 shape=True,
                                 global_shape=True,
                                 all_procs=True,
                                 print_arrays=True,
                                 out_stream=stream)

        text = stream.getvalue().split('\n')

        if prob.comm.rank == 0:
            norm = '|5.65685424949|'
            shape = (8, )
            value = '[2., 2., 2., 2., 2., 2., 2., 2.]'
        else:
            norm = '|7.93725393319|'
            shape = (7, )
            value = '[-3., -3., -3., -3., -3., -3., -3.]'

        expected = [
            "1 Input(s) in 'C3'",
            '------------------',
            '',
            'varname   value                shape  global_shape',
            '--------  -------------------  -----  ------------',
            'C3.invec  {}  {}   {}        '.format(norm, shape, shape),
            '          value:',
            '          array({})'.format(value),
        ]

        for i, line in enumerate(expected):
            if line and not line.startswith('-'):
                self.assertEqual(
                    remove_whitespace(text[i]), remove_whitespace(line),
                    '\nExpected: %s\nReceived: %s\n' % (line, text[i]))

        assert_rel_error(self, prob['C3.out'], -5.)