def setup(self): self.add_subsystem('n1', Node(n_in=1, n_out=2), promotes_inputs=[('I_in:0', 'I_in')]) self.add_subsystem('n2', Node()) # leaving defaults self.add_subsystem('R1', Resistor(R=100.), promotes_inputs=[('V_out', 'Vg')]) self.add_subsystem('R2', Resistor(R=10000.)) self.add_subsystem('D1', Diode(), promotes_inputs=[('V_out', 'Vg')]) self.connect('n1.V', ['R1.V_in', 'R2.V_in']) self.connect('R1.I', 'n1.I_out:0') self.connect('R2.I', 'n1.I_out:1') self.connect('n2.V', ['R2.V_out', 'D1.V_in']) self.connect('R2.I', 'n2.I_in:0') self.connect('D1.I', 'n2.I_out:0') self.nonlinear_solver = NewtonSolver() self.nonlinear_solver.options['iprint'] = 2 self.nonlinear_solver.options['maxiter'] = 20 ################################################################## # Assemble at the group level. Default assembled jac type is 'csc' ################################################################## self.options['assembled_jac_type'] = 'csc' self.linear_solver = DirectSolver(assemble_jac=True)
def setup(self): self.add_subsystem('n1', Node(n_in=1, n_out=2), promotes_inputs=[('I_in:0', 'I_in')]) self.add_subsystem('n2', Node()) # leaving defaults self.add_subsystem('R1', Resistor(R=100.), promotes_inputs=[('V_out', 'Vg')]) self.add_subsystem('R2', Resistor(R=10000.)) self.add_subsystem('D1', Diode(), promotes_inputs=[('V_out', 'Vg')]) self.connect('n1.V', ['R1.V_in', 'R2.V_in']) self.connect('R1.I', 'n1.I_out:0') self.connect('R2.I', 'n1.I_out:1') self.connect('n2.V', ['R2.V_out', 'D1.V_in']) self.connect('R2.I', 'n2.I_in:0') self.connect('D1.I', 'n2.I_out:0') self.nonlinear_solver = NewtonSolver() self.nonlinear_solver.options['iprint'] = 2 self.nonlinear_solver.options['maxiter'] = 20 self.linear_solver = DirectSolver()
def setup(self): self.add_subsystem('n1', Node(n_in=1, n_out=2), promotes_inputs=[('I_in:0', 'I_in')]) self.add_subsystem('n2', Node()) # leaving defaults self.add_subsystem('R1', Resistor(R=100.), promotes_inputs=[('V_out', 'Vg')]) self.add_subsystem('R2', Resistor(R=10000.)) self.add_subsystem('D1', Diode(), promotes_inputs=[('V_out', 'Vg')]) self.connect('n1.V', ['R1.V_in', 'R2.V_in']) self.connect('R1.I', 'n1.I_out:0') self.connect('R2.I', 'n1.I_out:1') self.connect('n2.V', ['R2.V_out', 'D1.V_in']) self.connect('R2.I', 'n2.I_in:0') # self.connect('D1.I', 'n2.I_out:0') # commented out so there is an unconnected input # example for docs for the N2 diagram self.nonlinear_solver = om.NewtonSolver(solve_subsystems=False) self.nonlinear_solver.options['iprint'] = 2 self.nonlinear_solver.options['maxiter'] = 20 self.linear_solver = om.DirectSolver()