Exemple #1
0
def test_sim_factory():
    # check sim_factory returns a function when passed a testsystem
    construct_sim = utils.sim_factory(AlanineDipeptideVacuum())
    assert (callable(construct_sim))

    # check that the resulting function returns an app.Simulation when passed an integrator
    sim = construct_sim(LangevinIntegrator())
    assert (isinstance(sim, app.Simulation))
Exemple #2
0
def test_clone_state():
    # construct source system
    construct_sim = utils.sim_factory(AlanineDipeptideVacuum())
    sim_a = construct_sim(LangevinIntegrator())
    sim_b = construct_sim(LangevinIntegrator())
    sim_a.step(50)
    sim_b.step(50)

    utils.clone_state(sim_a, sim_b)
    state_a = sim_a.context.getState(getPositions=True, getVelocities=True)
    state_b = sim_b.context.getState(getPositions=True, getVelocities=True)

    # check that the positions were cloned
    assert (np.isclose(state_a.getPositions(asNumpy=True),
                       state_b.getPositions(asNumpy=True)).all())

    # check that the velocities were cloned
    assert (np.isclose(state_a.getVelocities(asNumpy=True),
                       state_b.getVelocities(asNumpy=True)).all())
Exemple #3
0
def test_get_a_paired_kldiv_sample():
    # just make sure it returns floats?

    testsystem = AlanineDipeptideVacuum(constraints=None)
    construct_sim = utils.sim_factory(testsystem)

    equilibrium_sim = construct_sim(GHMCIntegrator(timestep=0.25 * unit.femtosecond))
    equilibrium_sim.minimizeEnergy()
    equilibrium_sim.step(1000)

    reference_sim = construct_sim(
        LangevinIntegrator(splitting='O V R V O', measure_shadow_work=True, measure_heat=True,
                           timestep=0.01 * unit.femtosecond))
    test_sim = construct_sim(
        LangevinIntegrator(splitting='O V R V O', measure_shadow_work=True, measure_heat=True,
                           timestep=3 * unit.femtosecond))

    kldiv_reference, kldiv_test = error.get_a_paired_kldiv_sample(equilibrium_sim, reference_sim, test_sim,
                                                                  protocol_length=100)

    assert (isinstance(kldiv_reference, float))
    assert (isinstance(kldiv_test, float))

    # more stringent test: check that median of reference here is lower than median of test_sim
    reference_samples, test_samples = [], []
    for _ in range(100):
        equilibrium_sim.step(100)
        kldiv_reference, kldiv_test = error.get_a_paired_kldiv_sample(equilibrium_sim, reference_sim, test_sim,
                                                                      protocol_length=100)
        reference_samples.append(kldiv_reference)
        test_samples.append(kldiv_test)
    assert (np.median(reference_samples) <= np.median(test_samples))

    # check that recycle_v works
    _ = error.get_a_paired_kldiv_sample(equilibrium_sim, reference_sim, test_sim,
                                                                  protocol_length=100, recycle_v=True)

    # check that it doesn't fail silently when reference_sim and test_sim are at different temperatures
    with pytest.raises(ValueError):
        test_sim.integrator.setTemperature(200 * unit.kelvin)
        error.get_a_paired_kldiv_sample(equilibrium_sim, reference_sim, test_sim)
def test_HybridSystemFactory():
    """
    run the `make_HybridSystemFactory`
    """
    from qmlify.openmm_torch.utils import configure_platform
    from openmmtools import utils

    hsf, testsystem_class = make_HybridSystemFactory()
    platform = configure_platform(platform_name=utils.get_fastest_platform(),
                                  fallback_platform_name='CPU',
                                  precision='mixed')

    # non/alchemical integrators
    from openmmtools.integrators import LangevinIntegrator
    nonalch_int = LangevinIntegrator(temperature=DEFAULT_TEMPERATURE)
    alch_int = LangevinIntegrator(temperature=DEFAULT_TEMPERATURE)

    system, alch_system = hsf._old_system, hsf.system

    nonalch_context, alch_context = openmm.Context(system, nonalch_int,
                                                   platform), openmm.Context(
                                                       alch_system, alch_int,
                                                       platform)

    for context in [nonalch_context, alch_context]:
        context.setPositions(testsystem_class.positions)
        context.setPeriodicBoxVectors(*system.getDefaultPeriodicBoxVectors())

    nonalch_energy = nonalch_context.getState(
        getEnergy=True).getPotentialEnergy().value_in_unit_system(
            unit.md_unit_system)
    alch_energy = alch_context.getState(
        getEnergy=True).getPotentialEnergy().value_in_unit_system(
            unit.md_unit_system)

    assert abs(
        alch_energy - nonalch_energy
    ) < ENERGY_DIFFERENCE_TOLERANCE, f"the nonalchemical energy of {nonalch_energy} and the alchemical energy (at lambda=0) of {alch_energy} has a difference that is greater than {ENERGY_DIFFERENCE_TOLERANCE}"
Exemple #5
0
def test_measure_shadow_work():
    # test that it's consistent with openmmtools
    construct_sim = utils.sim_factory(AlanineDipeptideVacuum(constraints=None))
    sim = construct_sim(
        LangevinIntegrator(splitting='O V R V O',
                           measure_heat=True,
                           measure_shadow_work=True,
                           timestep=2.0 * unit.femtoseconds))
    sim.runForClockTime(1 * unit.seconds)

    w_shads_here = []
    w_shads_openmmtools = []
    for _ in range(10):
        w_shad_prev = sim.integrator.get_shadow_work(dimensionless=True)
        w_shads_here.append(utils.measure_shadow_work(sim, 10))
        w_shad_new = sim.integrator.get_shadow_work(dimensionless=True)
        w_shads_openmmtools.append(w_shad_new - w_shad_prev)
    assert (np.isclose(w_shads_here, w_shads_openmmtools).all())
Exemple #6
0
}
thermodynamic_states.append( ThermodynamicState(system=system, temperature=temperature, pressure=pressure, parameters=parameters) )

# Umbrella on state
alchemical_lambda = 0.0
for theta0 in torsion_umbrella_values:
    for r0 in distance_umbrella_values:
        parameters = {
            'torsion_K' : torsion_K.value_in_unit_system(unit.md_unit_system), 'torsion_theta0' : theta0.value_in_unit_system(unit.md_unit_system), # umbrella parameters
            'distance_K' : distance_K.value_in_unit_system(unit.md_unit_system), 'distance_r0' : r0.value_in_unit_system(unit.md_unit_system), # umbrella parameters
        }
        thermodynamic_states.append( ThermodynamicState(system=system, temperature=temperature, pressure=pressure, parameters=parameters) )

# Select platform automatically; use mixed precision
from openmmtools.integrators import LangevinIntegrator
integrator = LangevinIntegrator(temperature=temperature, collision_rate=collision_rate, timestep=timestep)
context = openmm.Context(system, integrator)
platform = context.getPlatform()
del context
try:
    platform.setPropertyDefaultValue('Precision', 'mixed')
    platform.setPropertyDefaultValue('DeterministicForces', 'true')
except:
    pass

# Minimize
if minimize:
    print('Minimizing...')
    integrator = openmm.VerletIntegrator(timestep)
    context = openmm.Context(system, integrator)
    context.setPeriodicBoxVectors(*state.getPeriodicBoxVectors())
Exemple #7
0
                                 nonbondedCutoff=1.2 * unit.nanometers,
                                 constraints=app.HBonds,
                                 rigidWater=True,
                                 ewaldErrorTolerance=0.0005)

#### Thermodynamic State

kB = unit.BOLTZMANN_CONSTANT_kB * unit.AVOGADRO_CONSTANT_NA
temperature = 300.0 * unit.kelvin
pressure = 1.0 * unit.atmosphere

#### Integrator

friction = 1.0 / unit.picosecond
step_size = 2.0 * unit.femtoseconds
integrator = LangevinIntegrator(temperature, friction, step_size)
integrator.setConstraintTolerance(0.00001)

#### Barostat

barostat_interval = 25
barostat = mm.MonteCarloBarostat(pressure, temperature, barostat_interval)
system.addForce(barostat)

#### Platform

platform = mm.Platform.getPlatformByName('CUDA')
properties = {'CudaPrecision': 'mixed'}

#### Simulation
Exemple #8
0
system_load_xml_filename = 'system.xml'
state_load_xml_filename = 'state.xml'

# Read in the model
pdb_filename = output_prefix + 'equilibrated.pdb'
print('Loading %s' % pdb_filename)
pdb = app.PDBFile(pdb_filename)

# Load the system
print('Loading OpenMM System...')
with open(output_prefix + system_load_xml_filename, 'r') as infile:
    system = openmm.XmlSerializer.deserialize(infile.read())

# Serialize integrator
print('Serializing integrator %s' % output_prefix + integrator_xml_filename)
integrator = LangevinIntegrator(temperature, collision_rate, timestep,
                                splitting)
with open(output_prefix + integrator_xml_filename, 'w') as outfile:
    xml = openmm.XmlSerializer.serialize(integrator)
    outfile.write(xml)

print('Loading OpenMM State...')
with open(output_prefix + state_load_xml_filename, 'r') as infile:
    state = openmm.XmlSerializer.deserialize(infile.read())
context = openmm.Context(system, integrator)
context.setState(state)

# Equilibrate
print('Equilibrating...')
initial_time = time.time()
for iteration in progressbar.progressbar(range(niterations)):
    integrator.step(nsteps)
Exemple #9
0
 def make_integrator(splitting):
     return LangevinIntegrator(splitting=splitting,
                               timestep=2 * unit.femtoseconds,
                               measure_shadow_work=False,
                               measure_heat=False)
Exemple #10
0
def relax_structure(temperature,
                    system,
                    positions,
                    nequil=1000,
                    n_steps_per_iteration=250,
                    platform_name='OpenCL',
                    timestep=2. * unit.femtosecond,
                    collision_rate=90. / unit.picosecond,
                    **kwargs):
    """
    arguments
        temperature : simtk.unit.Quantity with units compatible with kelvin
            temperature of simulation
        system : openmm.System
            system object for simulation
        positions : simtk.unit.Quantity of shape (natoms,3) with units compatible with nanometers
            Positions of the atoms in the system
        nequil : int, default = 1000
            number of equilibration applications
        n_steps_per_iteration : int, default = 250
            numper of steps per nequil
        platform name : str default='OpenCL'
            platform to run openmm on. OpenCL is best as this is what is used on FAH
        timestep : simtk.unit.Quantity, default = 2*unit.femtosecond
            timestep for equilibration NOT for production
        collision_rate : simtk.unit.Quantity, default=90./unit.picosecond

    return
        state : openmm.State
            state of simulation (getEnergy=True, getForces=True, getPositions=True, getVelocities=True, getParameters=True)
    """

    from openmmtools.integrators import LangevinIntegrator
    _logger.info(f'Starting to relax')
    integrator = LangevinIntegrator(temperature=temperature,
                                    timestep=timestep,
                                    collision_rate=collision_rate)
    platform = openmm.Platform.getPlatformByName(platform_name)

    # prepare the plaform
    if platform_name in ['CUDA', 'OpenCL']:
        platform.setPropertyDefaultValue('Precision', 'mixed')
    if platform_name in ['CUDA']:
        platform.setPropertyDefaultValue('DeterministicForces', 'true')
    context = openmm.Context(system, integrator, platform)
    context.setPeriodicBoxVectors(*system.getDefaultPeriodicBoxVectors())
    context.setPositions(positions)

    _logger.info(f'Starting to minimise')
    openmm.LocalEnergyMinimizer.minimize(context)

    # Equilibrate
    _logger.info(f'set velocities to temperature')
    context.setVelocitiesToTemperature(temperature)
    _logger.info(
        f'Starting to equilibrate for {nequil*n_steps_per_iteration*timestep}')
    integrator.step(nequil * n_steps_per_iteration)
    context.setVelocitiesToTemperature(temperature)
    state = context.getState(getEnergy=True,
                             getForces=True,
                             getPositions=True,
                             getVelocities=True,
                             getParameters=True)
    _logger.info(f'Relax done')

    del context, integrator
    return state
Exemple #11
0
def _equil_NPT_OpenMM_protocol_0(topology,
                                 positions,
                                 temperature=300.0 * _unit.kelvin,
                                 pressure=1.0 * _unit.atmosphere,
                                 time=1.0 * _unit.nanosecond,
                                 forcefield=None,
                                 verbose=True,
                                 progress_bar=True):

    import numpy as np
    import openmm.app as app
    import openmm as mm
    from openmmtools.integrators import LangevinIntegrator, GeodesicBAOABIntegrator

    if progress_bar:
        from tqdm import tqdm
    else:

        def tqdm(arg):
            return arg

    #item needs to be openmm.modeller

    forcefield = app.ForceField("amber99sbildn.xml", "tip3p.xml")
    topology = item.topology
    positions = item.positions

    system = forcefield_generator.createSystem(topology,
                                               contraints=app.HBonds,
                                               nonbondedMethod=app.PME,
                                               nonbondedCutoff=1.0 *
                                               _unit.nanometers,
                                               rigidWater=True,
                                               ewaldErrorTolerance=0.0005)

    ## Thermodynamic State
    kB = _unit.BOLTZMANN_CONSTANT_kB * _unit.AVOGADRO_CONSTANT_NA
    temperature = temperature
    pressure = pressure

    ## Barostat
    barostat_frequency = 25  # steps
    barostat = mm.MonteCarloBarostat(pressure, temperature, barostat_frequency)
    system.addForce(barostat)

    ## Integrator
    friction = 1.0 / _unit.picosecond
    step_size = 2.0 * _unit.femtoseconds
    integrator = LangevinIntegrator(temperature, friction, step_size)
    integrator.setConstraintTolerance(0.00001)

    ## Platform
    platform = mm.Platform.getPlatformByName('CUDA')
    properties = {'CudaPrecision': 'mixed'}

    ## Simulation
    simulation = app.Simulation(topology, system, integrator, platform,
                                properties)
    simulation.context.setPositions(positions)
    simulation.context.setVelocitiesToTemperature(temperature)

    time_equilibration = time
    time_iteration = 0.2 * _unit.picoseconds
    number_iterations = int(time_equilibration / time_iteration)
    steps_iteration = int(time_iteration / step_size)
    steps_equilibration = number_iterations * steps_iteration

    ## Reporters

    net_mass, n_degrees_of_freedom = m3t.get(system,
                                             net_mass=True,
                                             n_degrees_of_freedom=True)
    niters = number_iterations
    data = dict()
    data['time'] = _unit.Quantity(np.zeros([niters], np.float64),
                                  _unit.picoseconds)
    data['potential'] = _unit.Quantity(np.zeros([niters], np.float64),
                                       _unit.kilocalories_per_mole)
    data['kinetic'] = _unit.Quantity(np.zeros([niters], np.float64),
                                     _unit.kilocalories_per_mole)
    data['volume'] = _unit.Quantity(np.zeros([niters], np.float64),
                                    _unit.angstroms**3)
    data['density'] = _unit.Quantity(np.zeros([niters], np.float64),
                                     _unit.gram / _unit.centimeters**3)
    data['kinetic_temperature'] = unit.Quantity(np.zeros([niters], np.float64),
                                                _unit.kelvin)

    for iteration in tqdm(range(number_iterations)):
        integrator.step(steps_iteration)
        state = simulation.context.getState(getEnergy=True)
        time = state.getTime()
        potential_energy = state.getPotentialEnergy()
        kinetic_energy = state.getKineticEnergy()
        volume = state.getPeriodicBoxVolume()
        density = (net_mass / volume).in_units_of(unit.gram /
                                                  unit.centimeter**3)
        kinetic_temperature = (2.0 * kinetic_energy /
                               kB / n_degrees_of_freedom).in_units_of(
                                   unit.kelvin)  # (1/2) ndof * kB * T = KE
        data['time'][iteration] = time
        data['potential'] = potential_energy
        data['kinetic'] = kinetic_energy
        data['volume'] = volume
        data['density'] = density
        data['kinetic_temperature'] = kinetic_temperature

    final_state = simulation.context.getState(getPositions=True,
                                              getVelocities=True)
    final_positions = final_state.getPositions()
    final_velocities = final_state.getVelocities()

    return final_positions, final_velocities, data
Exemple #12
0
def prepare_ml_system(positions,
                      topology,
                      system,
                      residue_indices,
                      model_name='ani2x',
                      save_filename='animodel.pt',
                      torch_scale_name='torch_scale',
                      torch_scale_default_value=0.,
                      HybridSystemFactory_kwargs={},
                      minimizer_kwargs={'maxIterations': 1000}):
    """
    prepare an ani-force-compatible system with built-in lambda assertions and energy compatibility assertions
    """
    from qmlify.openmm_torch.torchforce_generator import torch_alchemification_wrapper
    from openmmtools import utils
    from openmmtools.integrators import LangevinIntegrator
    from openmmtools.constants import kB
    from simtk.openmm import LocalEnergyMinimizer
    import numpy as np

    DEFAULT_TEMPERATURE = 300.0 * unit.kelvin
    ENERGY_DIFFERENCE_TOLERANCE = 1e-2

    _logger.info("preparing ML system and initializing assertions...")

    # make ml system and hybrid factory
    _logger.info(
        f"executing torch alchemification wrapper to make ml_system and hybrid_factory"
    )
    ml_system, hybrid_factory = torch_alchemification_wrapper(
        topology,
        system,
        residue_indices,
        model_name,
        save_filename,
        torch_scale_name,
        torch_scale_default_value,
    )
    # get platform
    platform = configure_platform(
        platform_name=utils.get_fastest_platform().getName())
    beta = 1. / (kB * DEFAULT_TEMPERATURE)

    # get integrators
    old_mm_int = LangevinIntegrator(temperature=DEFAULT_TEMPERATURE)
    mm_int = LangevinIntegrator(temperature=DEFAULT_TEMPERATURE)
    ml_int = LangevinIntegrator(temperature=DEFAULT_TEMPERATURE)

    # make mm contexts at lambda 0
    mm_context = openmm.Context(hybrid_factory.system, mm_int, platform)
    mm_context.setPositions(positions)
    mm_context.setPeriodicBoxVectors(
        *hybrid_factory.system.getDefaultPeriodicBoxVectors())

    # get the swig parameters and check the alchemical mm system
    _logger.debug(
        f"ensuring appropriate lambda initialization at lambda0 for alchemical system..."
    )
    mm_swig_params = mm_context.getParameters()
    for name in mm_swig_params:
        assert DEFAULT_LAMBDA0s[name] == mm_swig_params[
            name], f"swig parameter {name} is {mm_swig_params[name]} but should be {DEFAULT_LAMBDA0s[name]}"

    # minimize mm context
    LocalEnergyMinimizer.minimize(mm_context, **minimizer_kwargs)

    # apply the positions to the ml context
    ml_context = openmm.Context(ml_system, ml_int, platform)

    # check the ml context swig parameters
    ml_context.setPositions(
        mm_context.getState(getPositions=True).getPositions(asNumpy=True))
    ml_context.setPeriodicBoxVectors(
        *hybrid_factory.system.getDefaultPeriodicBoxVectors())

    # get the swig parameters and check the alchemical ml system
    ml_swig_params = ml_context.getParameters()
    torch_parameters_lambda0 = {
        torch_scale_name: torch_scale_default_value,
        f'auxiliary_{torch_scale_name}': 1.
    }  #this is hard coded...want this?
    _logger.debug(
        f"ensuring appropriate lambda initialization at lambda0 for ml alchemical system..."
    )
    for name in ml_swig_params:
        if name in list(DEFAULT_LAMBDA0s.keys()):
            assert DEFAULT_LAMBDA0s[name] == ml_swig_params[
                name], f"swig parameter {name} is {ml_swig_params[name]} but should be {DEFAULT_LAMBDA0s[name]}"
        else:  #it is a special torch parameter
            assert ml_swig_params[name] == torch_parameters_lambda0[name]

    # build the old (nonalch) system
    old_mm_context = openmm.Context(hybrid_factory._old_system, old_mm_int,
                                    platform)
    old_mm_context.setPositions(
        mm_context.getState(getPositions=True).getPositions(asNumpy=True))
    old_mm_context.setPeriodicBoxVectors(
        *hybrid_factory.system.getDefaultPeriodicBoxVectors())

    # now check energy by components
    _logger.debug(
        f"computing potential components of _all_ contexts...standby.")
    old_mm_potential_components = compute_potential_components(
        old_mm_context, beta, platform)
    mm_potential_components = compute_potential_components(
        mm_context, beta, platform)
    # ml_potential_components = compute_potential_components(ml_context, beta, platform) #we can't do this right now since there is a bug...

    sum_old_mm_potential_components = np.sum(
        [tup[1] for tup in old_mm_potential_components])
    sum_mm_potential_components = np.sum(
        [tup[1] for tup in mm_potential_components])
    # sum_ml_potential_components = np.sum(list(ml_potential_components.values()))

    mm_difference = abs(sum_old_mm_potential_components -
                        sum_mm_potential_components)
    ml_difference = abs(
        sum_mm_potential_components -
        ml_context.getState(getEnergy=True).getPotentialEnergy() * beta)

    try:
        _logger.info(f"checking mm bookkeeping energies...")
        assert mm_difference < ENERGY_DIFFERENCE_TOLERANCE
    except Exception as e:
        _logger.warning(
            f"{e}; difference between energies of the lambda0 alchemical mm and nonalchemical mm energy is {mm_difference}, which is higher than the tolerance of {ENERGY_DIFFERENCE_TOLERANCE}"
        )
    try:
        _logger.info(f"checking mm bookkeeping energies...")
        ml_difference < ENERGY_DIFFERENCE_TOLERANCE
    except Exception as e:
        _logger.warning(
            f"{e}; difference between energies of the lambda0 alchemical mm and ml energy is {mm_difference}, which is higher than the tolerance of {ENERGY_DIFFERENCE_TOLERANCE}"
        )

    # we cannot do the following...

    # for key, val in DEFAULT_LAMBDA1s:
    #     mm_context.setParameter(key, val)
    # mm_final_potential_components = compute_potential_components(mm_context, beta, platform)
    #
    # try:
    #     _logger.info(f"checking ml bookkeeping energies...")
    #     """
    #     here, we are making sure that the alchemical forces starting with `Custom` are all zero and that the other components are unchanged
    #     """
    #     for forcename, energy in mm_final_potential_components.items():
    #         if forcename in [torch_scale_name, f'auxiliary_{torch_scale_name}']:
    #             # don't check the torch force...at least not yet
    #             pass
    #         elif forcename[:7] == 'Custom':
    #             assert np.isclose(energy, 0.), f"the energy of {forcename} at lambda 1 is {energy} when it should be 0."
    #         else:
    #             lambda0_energy = mm_potential_components[forcename]
    #             assert np.isclose(energy, lambda0_energy), f"the energy of {forcename} at lambda 1 is {energy} when it should be {lambda0_energy}"
    # except Exception as e:
    #     _logger.warning(f"{e}; there is an issue associated with the lambda1 endstate energy bookkeeping. see above for which assertion failed.")

    # TODO : add a test for scaling lambdas?

    # remove the contexts and integrators used for testing (this will shore up some memory)...
    _logger.debug(f"removing contexts...")
    for context in [old_mm_context, mm_context, ml_context]:
        del context
    _logger.debug(f"removing integrators...")
    for integrator in [old_mm_int, mm_int, ml_int]:
        del integrator

    return ml_system, hybrid_factory
Exemple #13
0
import pytest
from openmmtools.integrators import LangevinIntegrator
from openmmtools.testsystems import AlanineDipeptideVacuum
from simtk import unit

from thresholds import utils, stability

testsystem = AlanineDipeptideVacuum()
construct_sim = utils.sim_factory(testsystem)

tiny_dt = 0.1 * unit.femtoseconds
stable_sim = construct_sim(LangevinIntegrator(timestep=tiny_dt))

huge_dt = 100 * unit.femtoseconds
unstable_sim = construct_sim(LangevinIntegrator(timestep=huge_dt))


def test_check_stability():
    # check that stable simulation is labeled stable
    assert (stability.check_stability(stable_sim, n_steps=100))

    # check that unstable simulation is labeled unstable
    assert (not stability.check_stability(unstable_sim, n_steps=100))


def test_stability_oracle_factory():
    def set_initial_conditions(sim):
        sim.context.setPositions(testsystem.positions)
        sim.context.setVelocitiesToTemperature(298 * unit.kelvin)

    iterated_stability_oracle = stability.stability_oracle_factory(
Exemple #14
0
# In[6]:


from qmlify.openmm_torch.utils import *


# In[7]:


nonalch_system = testsystem_class.system


# In[8]:


nonalch_int = LangevinIntegrator()
ml_int = LangevinIntegrator(splitting= 'V0 V1 R O R V1 V0')


# In[9]:

print("getting platform")
platform = configure_platform(utils.get_fastest_platform().getName())


# In[10]:

print(f"getting contexts")
nonalch_context = openmm.Context(nonalch_system, nonalch_int, platform)
ml_context = openmm.Context(ml_system, ml_int, platform)
Exemple #15
0
                          softcore_alpha_sterics=0.5,
                          softcore_alpha_electrostatics=0.5)
# grab the modified system and endstate system...
mod_system = hsf.system
endstate_system = hsf.endstate_system

# now that we have the modified system, we want to get the energy at _this_ endstate and make sure the energy is bookkeeping well with the non-alchemically-modified state.

# In[8]:

from openmmtools.integrators import LangevinIntegrator
from simtk import openmm

# In[9]:

nonalch_int = LangevinIntegrator(temperature=T)
alch_int = LangevinIntegrator(temperature=T)

# In[10]:

nonalch_context, alch_context = openmm.Context(system,
                                               nonalch_int), openmm.Context(
                                                   mod_system, alch_int)

# In[11]:

for context in [nonalch_context, alch_context]:
    context.setPositions(positions)
    context.setPeriodicBoxVectors(*system.getDefaultPeriodicBoxVectors())

# In[12]: