Exemple #1
0
def test_ring_breaking_detection():
    """
    Test the detection of ring-breaking transformations.

    """
    from perses.rjmc.topology_proposal import SmallMoleculeSetProposalEngine, AtomMapper
    from openmoltools.openeye import iupac_to_oemol, generate_conformers
    molecule1 = iupac_to_oemol("naphthalene")
    molecule2 = iupac_to_oemol("benzene")
    molecule1 = generate_conformers(molecule1, max_confs=1)
    molecule2 = generate_conformers(molecule2, max_confs=1)

    # Allow ring breaking
    new_to_old_atom_map = AtomMapper._get_mol_atom_map(
        molecule1, molecule2, allow_ring_breaking=True)
    if not len(new_to_old_atom_map) > 0:
        filename = 'mapping-error.png'
        #render_atom_mapping(filename, molecule1, molecule2, new_to_old_atom_map)
        msg = 'Napthalene -> benzene transformation with allow_ring_breaking=True is not returning a valid mapping\n'
        msg += 'Wrote atom mapping to %s for inspection; please check this.' % filename
        msg += str(new_to_old_atom_map)
        raise Exception(msg)

    new_to_old_atom_map = AtomMapper._get_mol_atom_map(
        molecule1, molecule2, allow_ring_breaking=False)
    if new_to_old_atom_map is not None:  # atom mapper should not retain _any_ atoms in default mode
        filename = 'mapping-error.png'
        #render_atom_mapping(filename, molecule1, molecule2, new_to_old_atom_map)
        msg = 'Napthalene -> benzene transformation with allow_ring_breaking=False is erroneously allowing ring breaking\n'
        msg += 'Wrote atom mapping to %s for inspection; please check this.' % filename
        msg += str(new_to_old_atom_map)
        raise Exception(msg)
def compare_energies(mol_name="naphthalene", ref_mol_name="benzene"):
    """
    Make an atom map where the molecule at either lambda endpoint is identical, and check that the energies are also the same.
    """
    from openmmtools import alchemy, states
    from perses.rjmc.topology_proposal import SmallMoleculeSetProposalEngine, TopologyProposal
    from perses.annihilation.relative import HybridTopologyFactory
    import simtk.openmm as openmm

    from perses.utils.openeye import createSystemFromIUPAC
    from openmoltools.openeye import iupac_to_oemol, generate_conformers

    mol = iupac_to_oemol(mol_name)
    mol = generate_conformers(mol, max_confs=1)
    m, system, positions, topology = createSystemFromIUPAC(mol_name)

    refmol = iupac_to_oemol(ref_mol_name)
    refmol = generate_conformers(refmol, max_confs=1)

    #map one of the rings
    atom_map = SmallMoleculeSetProposalEngine._get_mol_atom_map(mol, refmol)

    #now use the mapped atoms to generate a new and old system with identical atoms mapped. This will result in the
    #same molecule with the same positions for lambda=0 and 1, and ensures a contiguous atom map
    effective_atom_map = {value: value for value in atom_map.values()}

    #make a topology proposal with the appropriate data:
    top_proposal = TopologyProposal(new_topology=topology,
                                    new_system=system,
                                    old_topology=topology,
                                    old_system=system,
                                    new_to_old_atom_map=effective_atom_map,
                                    new_chemical_state_key="n1",
                                    old_chemical_state_key='n2')

    factory = HybridTopologyFactory(top_proposal, positions, positions)

    alchemical_system = factory.hybrid_system
    alchemical_positions = factory.hybrid_positions

    platform = openmm.Platform.getPlatformByName("Reference")

    _, _, alch_zero_state, alch_one_state = utils.generate_endpoint_thermodynamic_states(
        alchemical_system, top_proposal)

    rp_list = []
    for state in [alch_zero_state, alch_one_state]:
        integrator = openmm.VerletIntegrator(1)
        context = state.create_context(integrator, platform)
        samplerstate = states.SamplerState(
            positions=alchemical_positions,
            box_vectors=alchemical_system.getDefaultPeriodicBoxVectors())
        samplerstate.apply_to_context(context)
        rp = state.reduced_potential(context)
        rp_list.append(rp)
        del context, integrator

    assert abs(rp_list[0] - rp_list[1]) < 1e-6
Exemple #3
0
def createSystemFromIUPAC(iupac_name, title="MOL", **system_generator_kwargs):
    """
    Create an openmm system out of an oemol

    Parameters
    ----------
    iupac_name : str
        IUPAC name

    Returns
    -------
    molecule : openeye.oechem.OEMol
        OEMol molecule
    system : openmm.System object
        OpenMM system
    positions : [n,3] np.array of floats
        Positions
    topology : openmm.app.Topology object
        Topology
    """

    # Create OEMol
    # TODO write our own of this function so we can be
    # sure of the oe flags that are being used
    molecule = iupac_to_oemol(iupac_name, title=title)

    molecule = generate_conformers(molecule, max_confs=1)

    system_generator = system_generator_wrapper([molecule], **system_generator_kwargs)

    # generate openmm system, positions and topology
    system, positions, topology = OEMol_to_omm_ff(molecule, system_generator)

    return (molecule, system, positions, topology)
Exemple #4
0
json_data = {}
json_data["driver"] = "property"
json_data["kwargs"] = {"properties": ["WIBERG_LOWDIN_INDICES", "MAYER_INDICES"]}
json_data["method"] = "hf3c"
json_data["options"] = {"BASIS": "def2-svp"}
json_data["return_output"] = "True"

for mol in mollist[2:]:
    name = mol.GetTitle()
    print('\nGenerating input for {}'.format(name))
    try:
        os.mkdir(os.path.join(output_path, name))
    except FileExistsError:
        print("Overwriting existing directory")
    conformers = openeye.generate_conformers(mol)
    tagged_smiles = oechem.OEMolToSmiles(mol)
    json_data["tagged_smiles"] = tagged_smiles
    molecule, atom_map = utils.get_atom_map(tagged_smiles, conformers, is_mapped=True)
    if not atom_map:
        print("Can't get atom map. Skipping {}".format(name))
        continue
    print("{} has {} conformers".format(name, conformers.GetMaxConfIdx()))
    # Generate mol2 file
    openeye.molecule_to_mol2(conformers, tripos_mol2_filename='{}.mol2'.format(name), conformer=None)
    # Generate xyz file
    #xyz = utils.to_mapped_xyz(conformers, atom_map=atom_map, xyz_format=True, filename=name)

    xyz = utils.to_mapped_xyz(conformers, atom_map=atom_map)
    for i, coords in enumerate(xyz.split('*')):
        json_data['molecule'] = coords
    def __init__(self, molecules: List[str], output_filename: str, ncmc_switching_times: Dict[str, int], equilibrium_steps: Dict[str, int], timestep: unit.Quantity, initial_molecule: str=None, geometry_options: Dict=None):
        self._molecules = [SmallMoleculeSetProposalEngine.canonicalize_smiles(molecule) for molecule in molecules]
        environments = ['explicit', 'vacuum']
        temperature = 298.15 * unit.kelvin
        pressure = 1.0 * unit.atmospheres
        constraints = app.HBonds
        self._storage = NetCDFStorage(output_filename)
        self._ncmc_switching_times = ncmc_switching_times
        self._n_equilibrium_steps = equilibrium_steps
        self._geometry_options = geometry_options

        # Create a system generator for our desired forcefields.
        from perses.rjmc.topology_proposal import SystemGenerator
        system_generators = dict()
        from pkg_resources import resource_filename
        gaff_xml_filename = resource_filename('perses', 'data/gaff.xml')
        barostat = openmm.MonteCarloBarostat(pressure, temperature)
        system_generators['explicit'] = SystemGenerator([gaff_xml_filename, 'tip3p.xml'],
                                                        forcefield_kwargs={'nonbondedCutoff': 9.0 * unit.angstrom,
                                                                           'implicitSolvent': None,
                                                                           'constraints': constraints,
                                                                           'ewaldErrorTolerance': 1e-5,
                                                                           'hydrogenMass': 3.0*unit.amu}, periodic_forcefield_kwargs = {'nonbondedMethod': app.PME}
                                                        barostat=barostat)
        system_generators['vacuum'] = SystemGenerator([gaff_xml_filename],
                                                      forcefield_kwargs={'implicitSolvent': None,
                                                                         'constraints': constraints,
                                                                         'hydrogenMass': 3.0*unit.amu}, nonperiodic_forcefield_kwargs = {'nonbondedMethod': app.NoCutoff})

        #
        # Create topologies and positions
        #
        topologies = dict()
        positions = dict()

        from openmoltools import forcefield_generators
        forcefield = app.ForceField(gaff_xml_filename, 'tip3p.xml')
        forcefield.registerTemplateGenerator(forcefield_generators.gaffTemplateGenerator)

        # Create molecule in vacuum.
        from perses.utils.openeye import extractPositionsFromOEMol
        from openmoltools.openeye import smiles_to_oemol, generate_conformers
        if initial_molecule:
            smiles = initial_molecule
        else:
            smiles = np.random.choice(molecules)
        molecule = smiles_to_oemol(smiles)
        molecule = generate_conformers(molecule, max_confs=1)
        topologies['vacuum'] = forcefield_generators.generateTopologyFromOEMol(molecule)
        positions['vacuum'] = extractPositionsFromOEMol(molecule)

        # Create molecule in solvent.
        modeller = app.Modeller(topologies['vacuum'], positions['vacuum'])
        modeller.addSolvent(forcefield, model='tip3p', padding=9.0 * unit.angstrom)
        topologies['explicit'] = modeller.getTopology()
        positions['explicit'] = modeller.getPositions()

        # Set up the proposal engines.
        proposal_metadata = {}
        proposal_engines = dict()

        for environment in environments:
            proposal_engines[environment] = SmallMoleculeSetProposalEngine(self._molecules,
                                                                               system_generators[environment])

        # Generate systems
        systems = dict()
        for environment in environments:
            systems[environment] = system_generators[environment].build_system(topologies[environment])

        # Define thermodynamic state of interest.

        thermodynamic_states = dict()
        thermodynamic_states['explicit'] = states.ThermodynamicState(system=systems['explicit'],
                                                                     temperature=temperature, pressure=pressure)
        thermodynamic_states['vacuum'] = states.ThermodynamicState(system=systems['vacuum'], temperature=temperature)

        # Create SAMS samplers
        from perses.samplers.samplers import ExpandedEnsembleSampler, SAMSSampler
        mcmc_samplers = dict()
        exen_samplers = dict()
        sams_samplers = dict()
        for environment in environments:
            storage = NetCDFStorageView(self._storage, envname=environment)

            if self._geometry_options:
                n_torsion_divisions = self._geometry_options['n_torsion_divsions'][environment]
                use_sterics = self._geometry_options['use_sterics'][environment]

            else:
                n_torsion_divisions = 180
                use_sterics = False

            geometry_engine = geometry.FFAllAngleGeometryEngine(storage=storage, n_torsion_divisions=n_torsion_divisions, use_sterics=use_sterics)
            move = mcmc.LangevinSplittingDynamicsMove(timestep=timestep, splitting="V R O R V",
                                                       n_restart_attempts=10)
            chemical_state_key = proposal_engines[environment].compute_state_key(topologies[environment])
            if environment == 'explicit':
                sampler_state = states.SamplerState(positions=positions[environment],
                                                    box_vectors=systems[environment].getDefaultPeriodicBoxVectors())
            else:
                sampler_state = states.SamplerState(positions=positions[environment])
            mcmc_samplers[environment] = mcmc.MCMCSampler(thermodynamic_states[environment], sampler_state, move)


            exen_samplers[environment] = ExpandedEnsembleSampler(mcmc_samplers[environment], topologies[environment],
                                                                 chemical_state_key, proposal_engines[environment],
                                                                 geometry_engine,
                                                                 options={'nsteps': self._ncmc_switching_times[environment]}, storage=storage, ncmc_write_interval=self._ncmc_switching_times[environment])
            exen_samplers[environment].verbose = True
            sams_samplers[environment] = SAMSSampler(exen_samplers[environment], storage=storage)
            sams_samplers[environment].verbose = True

        # Create test MultiTargetDesign sampler.
        from perses.samplers.samplers import MultiTargetDesign
        target_samplers = {sams_samplers['explicit']: 1.0, sams_samplers['vacuum']: -1.0}
        designer = MultiTargetDesign(target_samplers, storage=self._storage)

        # Store things.
        self.molecules = molecules
        self.environments = environments
        self.topologies = topologies
        self.positions = positions
        self.system_generators = system_generators
        self.proposal_engines = proposal_engines
        self.thermodynamic_states = thermodynamic_states
        self.mcmc_samplers = mcmc_samplers
        self.exen_samplers = exen_samplers
        self.sams_samplers = sams_samplers
        self.designer = designer
def generate_torsions(inp_mol, output_path, interval, base_name=None, tar=True):
    """
    This function takes a 3D molecule (pdf, mol2 or sd file) and generates structures for a torsion drive on all torsions
    in the molecule. This function uses OpenEye
    Parameters
    ----------
    mol : OEMol
        molecule to generate 1D torsion scans
    output_path: str
        path to output file directory
    interval: int
        angle (in degrees) of interval for torsion drive
    base_name: str
        base name for file. Default is None. If default, use title in OEMol for base name
    tar: bool
        If true, will compress output

    """
    if not base_name:
        base_name = inp_mol.GetTitle()

    mid_tors = [[tor.a, tor.b, tor.c, tor.d ] for tor in oechem.OEGetTorsions(inp_mol)]

    # This smarts should match terminal torsions such as -CH3, -NH2, -NH3+, -OH, and -SH
    smarts = '[*]~[*]-[X2H1,X3H2,X4H3]-[#1]'
    qmol=oechem.OEQMol()
    if not oechem.OEParseSmarts(qmol, smarts):
        warnings.warn('OEParseSmarts failed')
    ss = oechem.OESubSearch(qmol)
    mol = oechem.OEMol(inp_mol)
    h_tors = []
    oechem.OEPrepareSearch(mol, ss)
    unique = True
    for match in ss.Match(mol, unique):
        tor = []
        for ma in match.GetAtoms():
            tor.append(ma.target)
        h_tors.append(tor)

    # Combine middle and terminal torsions
    all_tors = mid_tors + h_tors
    # Sort all_tors so that it's grouped by central bond
    central_bonds = np.zeros((len(all_tors), 3), dtype=int)
    for i, tor in enumerate(all_tors):
        central_bonds[i][0] = i
        central_bonds[i][1] = tor[1].GetIdx()
        central_bonds[i][2] = tor[2].GetIdx()

    grouped = central_bonds[central_bonds[:, 2].argsort()]
    sorted_tors = [all_tors[i] for i in grouped[:, 0]]

    # Keep only one torsion per rotatable bond
    tors = []
    best_tor = [sorted_tors[0][0], sorted_tors[0][0], sorted_tors[0][0], sorted_tors[0][0]]
    first_pass = True
    for tor in sorted_tors:
        logger().info("Idxs: {} {} {} {}".format(tor[0].GetIdx(), tor[1].GetIdx(), tor[2].GetIdx(), tor[3].GetIdx()))
        logger().info("Atom Numbers: {} {} {} {}".format(tor[0].GetAtomicNum(), tor[1].GetAtomicNum(), tor[2].GetAtomicNum(), tor[3].GetAtomicNum()))
        if tor[1].GetIdx() != best_tor[1].GetIdx() or tor[2].GetIdx() != best_tor[2].GetIdx():
            new_tor = True
            if not first_pass:
                logger().info("Adding to list: {} {} {} {}".format(best_tor[0].GetIdx(), best_tor[1].GetIdx(), best_tor[2].GetIdx(), best_tor[3].GetIdx()))
                tors.append(best_tor)
            first_pass = False
            best_tor = tor
            best_tor_order = tor[0].GetAtomicNum() + tor[3].GetAtomicNum()
            logger().info("new_tor with central bond across atoms: {} {}".format(tor[1].GetIdx(), tor[2].GetIdx()))
        else:
            logger().info("Not a new_tor but now with end atoms: {} {}".format(tor[0].GetIdx(), tor[3].GetIdx()))
            tor_order = tor[0].GetAtomicNum() + tor[3].GetAtomicNum()
            if tor_order > best_tor_order:
                best_tor = tor
                best_tor_order = tor_order
    logger().info("Adding to list: {} {} {} {}".format(best_tor[0].GetIdx(), best_tor[1].GetIdx(), best_tor[2].GetIdx(), best_tor[3].GetIdx()))
    tors.append(best_tor)

    logger().info("List of torsion to drive:")
    for tor in tors:
        logger().info("Idx: {} {} {} {}".format(tor[0].GetIdx(), tor[1].GetIdx(), tor[2].GetIdx(), tor[3].GetIdx()))
        logger().info("Atom numbers: {} {} {} {}".format(tor[0].GetAtomicNum(), tor[1].GetAtomicNum(), tor[2].GetAtomicNum(), tor[3].GetAtomicNum()))

    conf = mol.GetConfs().next()
    coords = oechem.OEFloatArray(conf.GetMaxAtomIdx() * 3)
    conf.GetCoords(coords)
    # Check if coordinates are not zero
    values = np.asarray([coords.__getitem__(i) == 0 for i in range(coords.__len__())])
    if values.all():
        # Generate new coordinates.
        mol2 = generate_conformers(mol, max_confs=1)
        conf = mol2.GetConfs().next()
        coords = oechem.OEFloatArray(conf.GetMaxAtomIdx() * 3)
        conf.GetCoords(coords)
        mol2.DeleteConfs()
    mol.DeleteConfs()

    for tor in tors:
        tor_name = str((tor[0].GetIdx())+1) + '_' + str((tor[1].GetIdx())+1) + '_' + str((tor[2].GetIdx())+1) + '_' + str((tor[3].GetIdx())+1)
        folder = os.path.join(output_path, tor_name)
        try:
            os.makedirs(folder)
        except FileExistsError:
            logger().info("Overwriting existing directory {}".format(tor_name))
        for angle in range(0, 360, interval):
            angle_folder = os.path.join(folder, str(angle))
            try:
                os.mkdir(angle_folder)
            except FileExistsError:
                logger().info("Overwriting existing directory {}".format(tor_name))
            newconf = mol.NewConf(coords)
            oechem.OESetTorsion(newconf, tor[0], tor[1], tor[2], tor[3], radians(angle))
            pdb = oechem.oemolostream('{}/{}_{}_{}.pdb'.format(angle_folder, base_name, tor_name, angle))
            oechem.OEWritePDBFile(pdb, newconf)
    if tar:
        # tar archive output
        out = tarfile.open('{}.tar.gz'.format(output_path), mode='w:gz')
        os.chdir(output_path)
        os.chdir('../')
        out.add('{}'.format(base_name))
        out.close()
Exemple #7
0
def generate_torsions(inp_mol,
                      output_path,
                      interval,
                      base_name=None,
                      tar=True):
    """
    This function takes a 3D molecule (pdf, mol2 or sd file) and generates structures for a torsion drive on all torsions
    in the molecule. This function uses OpenEye
    Parameters
    ----------
    mol : OEMol
        molecule to generate 1D torsion scans
    output_path: str
        path to output file directory
    interval: int
        angle (in degrees) of interval for torsion drive
    base_name: str
        base name for file. Default is None. If default, use title in OEMol for base name
    tar: bool
        If true, will compress output

    """
    if not base_name:
        base_name = inp_mol.GetTitle()

    mid_tors = [[tor.a, tor.b, tor.c, tor.d]
                for tor in oechem.OEGetTorsions(inp_mol)]

    # This smarts should match terminal torsions such as -CH3, -NH2, -NH3+, -OH, and -SH
    smarts = '[*]~[*]-[X2H1,X3H2,X4H3]-[#1]'
    qmol = oechem.OEQMol()
    if not oechem.OEParseSmarts(qmol, smarts):
        warnings.warn('OEParseSmarts failed')
    ss = oechem.OESubSearch(qmol)
    mol = oechem.OEMol(inp_mol)
    h_tors = []
    oechem.OEPrepareSearch(mol, ss)
    unique = True
    for match in ss.Match(mol, unique):
        tor = []
        for ma in match.GetAtoms():
            tor.append(ma.target)
        h_tors.append(tor)

    # Combine middle and terminal torsions
    all_tors = mid_tors + h_tors
    # Sort all_tors so that it's grouped by central bond
    central_bonds = np.zeros((len(all_tors), 3), dtype=int)
    for i, tor in enumerate(all_tors):
        central_bonds[i][0] = i
        central_bonds[i][1] = tor[1].GetIdx()
        central_bonds[i][2] = tor[2].GetIdx()

    grouped = central_bonds[central_bonds[:, 2].argsort()]
    sorted_tors = [all_tors[i] for i in grouped[:, 0]]

    # Keep only one torsion per rotatable bond
    tors = []
    best_tor = [
        sorted_tors[0][0], sorted_tors[0][0], sorted_tors[0][0],
        sorted_tors[0][0]
    ]
    first_pass = True
    for tor in sorted_tors:
        logger().info("Idxs: {} {} {} {}".format(tor[0].GetIdx(),
                                                 tor[1].GetIdx(),
                                                 tor[2].GetIdx(),
                                                 tor[3].GetIdx()))
        logger().info("Atom Numbers: {} {} {} {}".format(
            tor[0].GetAtomicNum(), tor[1].GetAtomicNum(),
            tor[2].GetAtomicNum(), tor[3].GetAtomicNum()))
        if tor[1].GetIdx() != best_tor[1].GetIdx() or tor[2].GetIdx(
        ) != best_tor[2].GetIdx():
            new_tor = True
            if not first_pass:
                logger().info("Adding to list: {} {} {} {}".format(
                    best_tor[0].GetIdx(), best_tor[1].GetIdx(),
                    best_tor[2].GetIdx(), best_tor[3].GetIdx()))
                tors.append(best_tor)
            first_pass = False
            best_tor = tor
            best_tor_order = tor[0].GetAtomicNum() + tor[3].GetAtomicNum()
            logger().info(
                "new_tor with central bond across atoms: {} {}".format(
                    tor[1].GetIdx(), tor[2].GetIdx()))
        else:
            logger().info("Not a new_tor but now with end atoms: {} {}".format(
                tor[0].GetIdx(), tor[3].GetIdx()))
            tor_order = tor[0].GetAtomicNum() + tor[3].GetAtomicNum()
            if tor_order > best_tor_order:
                best_tor = tor
                best_tor_order = tor_order
    logger().info("Adding to list: {} {} {} {}".format(best_tor[0].GetIdx(),
                                                       best_tor[1].GetIdx(),
                                                       best_tor[2].GetIdx(),
                                                       best_tor[3].GetIdx()))
    tors.append(best_tor)

    logger().info("List of torsion to drive:")
    for tor in tors:
        logger().info("Idx: {} {} {} {}".format(tor[0].GetIdx(),
                                                tor[1].GetIdx(),
                                                tor[2].GetIdx(),
                                                tor[3].GetIdx()))
        logger().info("Atom numbers: {} {} {} {}".format(
            tor[0].GetAtomicNum(), tor[1].GetAtomicNum(),
            tor[2].GetAtomicNum(), tor[3].GetAtomicNum()))

    conf = mol.GetConfs().next()
    coords = oechem.OEFloatArray(conf.GetMaxAtomIdx() * 3)
    conf.GetCoords(coords)
    # Check if coordinates are not zero
    values = np.asarray(
        [coords.__getitem__(i) == 0 for i in range(coords.__len__())])
    if values.all():
        # Generate new coordinates.
        mol2 = generate_conformers(mol, max_confs=1)
        conf = mol2.GetConfs().next()
        coords = oechem.OEFloatArray(conf.GetMaxAtomIdx() * 3)
        conf.GetCoords(coords)
        mol2.DeleteConfs()
    mol.DeleteConfs()

    for tor in tors:
        tor_name = str((tor[0].GetIdx()) + 1) + '_' + str(
            (tor[1].GetIdx()) + 1) + '_' + str(
                (tor[2].GetIdx()) + 1) + '_' + str((tor[3].GetIdx()) + 1)
        folder = os.path.join(output_path, tor_name)
        try:
            os.makedirs(folder)
        except FileExistsError:
            logger().info("Overwriting existing directory {}".format(tor_name))
        for angle in range(0, 360, interval):
            angle_folder = os.path.join(folder, str(angle))
            try:
                os.mkdir(angle_folder)
            except FileExistsError:
                logger().info(
                    "Overwriting existing directory {}".format(tor_name))
            newconf = mol.NewConf(coords)
            oechem.OESetTorsion(newconf, tor[0], tor[1], tor[2], tor[3],
                                radians(angle))
            pdb = oechem.oemolostream('{}/{}_{}_{}.pdb'.format(
                angle_folder, base_name, tor_name, angle))
            oechem.OEWritePDBFile(pdb, newconf)
    if tar:
        # tar archive output
        out = tarfile.open('{}.tar.gz'.format(output_path), mode='w:gz')
        os.chdir(output_path)
        os.chdir('../')
        out.add('{}'.format(base_name))
        out.close()