def _register_alignment(self, features, labels, alignment):
     labels["alignment"] = text.alignment_matrix_from_pharaoh(
         alignment,
         self.features_inputter.get_length(features, ignore_special_tokens=True),
         self.labels_inputter.get_length(labels, ignore_special_tokens=True),
     )
     return features, labels
 def make_features(self, element=None, features=None, training=None):
   if training and self.alignment_file is not None:
     element, alignment = element
   else:
     alignment = None
   features, labels = super(SequenceToSequenceInputter, self).make_features(
       element=element, features=features, training=training)
   if alignment is not None:
     labels["alignment"] = text.alignment_matrix_from_pharaoh(
         alignment,
         self.features_inputter.get_length(features, ignore_special_tokens=True),
         self.labels_inputter.get_length(labels, ignore_special_tokens=True))
   return features, labels
 def make_features(self, element=None, features=None, training=None):
   if training and self.alignment_file is not None:
     element, alignment = element
   else:
     alignment = None
   features, labels = super(SequenceToSequenceInputter, self).make_features(
       element=element, features=features, training=training)
   if alignment is not None:
     labels["alignment"] = text.alignment_matrix_from_pharaoh(
         alignment,
         self.features_inputter.get_length(features),
         self.labels_inputter.get_length(labels))
   _shift_target_sequence(labels)
   if "noisy_ids" in labels:
     _shift_target_sequence(labels, prefix="noisy_")
   return features, labels
Exemple #4
0
 def _testPharaohAlignments(self, line, lengths, expected_matrix):
     matrix = text.alignment_matrix_from_pharaoh(tf.constant(line),
                                                 lengths[0],
                                                 lengths[1],
                                                 dtype=tf.int32)
     self.assertListEqual(expected_matrix, self.evaluate(matrix).tolist())