def _model_fn(features, labels, params, mode, config): """model_fn implementation.""" if mode == tf.estimator.ModeKeys.TRAIN: features_shards = dispatcher.shard(features) labels_shards = dispatcher.shard(labels) with tf.variable_scope(self.name, initializer=self._initializer(params)): losses_shards = dispatcher(_loss_op, features_shards, labels_shards, params, mode, config) loss = _extract_loss(losses_shards) train_op, extra_variables = optimize_loss( loss, params, mixed_precision=(self.dtype == tf.float16), hvd=hvd) training_hooks = [] if extra_variables: training_hooks.append( hooks.VariablesInitializerHook(extra_variables)) if config is not None: features_length = self.features_inputter.get_length( features) labels_length = self.labels_inputter.get_length(labels) num_words = {} if features_length is not None: num_words["source"] = tf.reduce_sum(features_length) if labels_length is not None: num_words["target"] = tf.reduce_sum(labels_length) training_hooks.append( hooks.LogWordsPerSecondHook( num_words, every_n_steps=config.save_summary_steps, output_dir=config.model_dir)) return tf.estimator.EstimatorSpec( mode, loss=loss, train_op=train_op, training_hooks=training_hooks) elif mode == tf.estimator.ModeKeys.EVAL: with tf.variable_scope(self.name): logits, predictions = self._build(features, labels, params, mode, config=config) loss = self._compute_loss(features, labels, logits, params, mode) loss = _extract_loss(loss) eval_metric_ops = self._compute_metrics( features, labels, predictions) # pylint: disable=assignment-from-none evaluation_hooks = [] if predictions is not None and eval_prediction_hooks_fn is not None: evaluation_hooks.extend( eval_prediction_hooks_fn(predictions)) return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops, evaluation_hooks=evaluation_hooks) elif mode == tf.estimator.ModeKeys.PREDICT: with tf.variable_scope(self.name): _, predictions = self._build(features, labels, params, mode, config=config) # Forward example index for reordering predictions. if "index" in features: predictions["index"] = features["index"] export_outputs = {} export_outputs[tf.saved_model.signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( tf.estimator.export.PredictOutput( predictions)) return tf.estimator.EstimatorSpec( mode, predictions=predictions, export_outputs=export_outputs) else: raise RuntimeError("Invalid mode")
def _fn(features, labels, params, mode, config): """model_fn implementation.""" local_model = copy.deepcopy(model) if mode == tf.estimator.ModeKeys.TRAIN: features_shards = dispatcher.shard(features) labels_shards = dispatcher.shard(labels) losses_shards = dispatcher(_loss_op, local_model, features_shards, labels_shards, params, mode) loss = _extract_loss(losses_shards) train_op = local_model.optimize_loss(loss, params=params, hvd=hvd) extra_variables = [] if isinstance(train_op, tuple): train_op, extra_variables = train_op training_hooks = [] if extra_variables: training_hooks.append( hooks.VariablesInitializerHook(extra_variables)) if config is not None: local_model.examples_inputter.visualize(config.model_dir) features_length = local_model.features_inputter.get_length( features) labels_length = (local_model.labels_inputter.get_length(labels) if not model.unsupervised else None) num_words = {} if features_length is not None: num_words["source"] = tf.reduce_sum(features_length) if labels_length is not None: num_words["target"] = tf.reduce_sum(labels_length) training_hooks.append( hooks.LogWordsPerSecondHook( num_words, every_n_steps=config.save_summary_steps, output_dir=config.model_dir)) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op, training_hooks=training_hooks) elif mode == tf.estimator.ModeKeys.EVAL: logits, predictions = local_model(features, labels, params, mode) loss = local_model.compute_loss(logits, labels, training=False, params=params) loss = _extract_loss(loss) eval_metric_ops = local_model.compute_metrics(predictions, labels) evaluation_hooks = [] if predictions is not None and eval_prediction_hooks_fn is not None: evaluation_hooks.extend(eval_prediction_hooks_fn(predictions)) return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops, evaluation_hooks=evaluation_hooks) elif mode == tf.estimator.ModeKeys.PREDICT: _, predictions = local_model(features, labels, params, mode) # Forward example index for reordering predictions. if "index" in features: predictions["index"] = features["index"] export_outputs = {} export_outputs[tf.saved_model.signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( tf.estimator.export.PredictOutput(predictions)) return tf.estimator.EstimatorSpec(mode, predictions=predictions, export_outputs=export_outputs) else: raise ValueError("Invalid mode")
def _fn(features, labels, params, mode, config): """model_fn implementation.""" local_model_trans = copy.deepcopy(trans_model) local_model_ae = copy.deepcopy(ae_model) decode_two = True if mode == tf.estimator.ModeKeys.TRAIN: features_shards = dispatcher.shard(features) labels_shards = dispatcher.shard(labels) losses_shards = dispatcher(_loss_op, local_model_trans, features_shards, labels_shards, params, mode) loss = _extract_loss(losses_shards) train_op = local_model_trans.optimize_loss(loss, params=params, hvd=hvd) extra_variables = [] if isinstance(train_op, tuple): train_op, extra_variables = train_op training_hooks = [] if extra_variables: training_hooks.append( hooks.VariablesInitializerHook(extra_variables)) if config is not None: local_model_trans.examples_inputter.visualize(config.model_dir) features_length = local_model_trans.features_inputter.get_length( features) labels_length = ( local_model_trans.labels_inputter.get_length(labels) if not trans_model.unsupervised else None) num_words = {} if features_length is not None: num_words["source"] = tf.reduce_sum(features_length) if labels_length is not None: num_words["target"] = tf.reduce_sum(labels_length) training_hooks.append( hooks.LogWordsPerSecondHook( num_words, every_n_steps=config.save_summary_steps, output_dir=config.model_dir)) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op, training_hooks=training_hooks) elif mode == tf.estimator.ModeKeys.EVAL: logits, predictions = local_model_trans(features, labels, params, mode) loss = local_model_trans.compute_loss(logits, labels, training=False, params=params) loss = _extract_loss(loss) eval_metric_ops = local_model_trans.compute_metrics( predictions, labels) evaluation_hooks = [] if predictions is not None and eval_prediction_hooks_fn is not None: evaluation_hooks.extend(eval_prediction_hooks_fn(predictions)) return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops, evaluation_hooks=evaluation_hooks) elif mode == tf.estimator.ModeKeys.PREDICT and not infering: _, predictions = local_model_trans(features, labels, params, mode) if "index" in features: predictions["index"] = features["index"] export_outputs = {} export_outputs[tf.saved_model.signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( tf.estimator.export.PredictOutput(predictions)) return tf.estimator.EstimatorSpec(mode, predictions=predictions, export_outputs=export_outputs) elif mode == tf.estimator.ModeKeys.PREDICT: print("==========================================") #print (local_model.name) print(json.dumps(params, indent=2)) #print (constants.END_OF_SENTENCE_ID) #print (constants.END_OF_SENTENCE_TOKEN) #ae_features = { # "ids": features["ids_ae"], # "length": features["length_ae"], # "tokens": features["tokens_ae"] # } #ae_metadata = { # "source_words_vocabulary":"../vocab/vocab.zh", # "target_words_vocabulary":"../vocab/vocab.zh" # } #local_model = load_model("../model/AutoEncoder", "auto_encoder.py", model_name=None, serialize_model=True) #local_model.initialize(ae_metadata) #_, predictions = local_model(ae_features, labels, params, mode) #if "index" in features: # predictions["index"] = features["index"] #export_outputs = {} #export_outputs[tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( # tf.estimator.export.PredictOutput(predictions)) #return tf.estimator.EstimatorSpec(mode,predictions=predictions,export_outputs=export_outputs) #local_model = local_model_ae #local_model = local_model_trans beam_size = params.get("beam_width", 1) def get_info(local_model, features): with tf.variable_scope( local_model.name, initializer=local_model._initializer(params)): if not compat.reuse(): print("REUSING") local_model._build() inputs = local_model.features_inputter.make_inputs( features) length = local_model.features_inputter.get_length(features) #inputs = local_model.features_inputter.make_inputs({"ids":features["ids"]}) #length = local_model.features_inputter.get_length({"length":features["length"]}) #_, predictions = local_model._call(features, labels, params, mode) with tf.variable_scope("encoder"): encoder_outputs, encoder_state, encoder_sequence_length = local_model.encoder.encode( inputs, sequence_length=length, mode=mode) with tf.variable_scope("decoder"): batch_size = tf.shape( tf.contrib.framework.nest.flatten(encoder_outputs) [0])[0] initial_state = tf.contrib.seq2seq.tile_batch( encoder_state, multiplier=beam_size) memory = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_size) memory_sequence_length = tf.contrib.seq2seq.tile_batch( encoder_sequence_length, multiplier=beam_size) output_layer = local_model.output_layer if output_layer == None: output_layer = tf.layers.Dense( local_model.labels_inputter.vocabulary_size, use_bias=True, dtype=local_model.labels_inputter.dtype) output_layer.build( [None, local_model.decoder.output_size]) embedding_fn = lambda ids: tf.nn.embedding_lookup( local_model.labels_inputter.embedding, ids) step_fn, initial_state = local_model.decoder.step_fn( tf.estimator.ModeKeys.PREDICT, batch_size * beam_size, initial_state=initial_state, memory=memory, memory_sequence_length=memory_sequence_length, dtype=local_model.labels_inputter.dtype) def symbols_to_logits_fn(ids, step, state): inputs = embedding_fn(ids) returned_values = step_fn( step, inputs, state, tf.estimator.ModeKeys.PREDICT) outputs, state, attention = returned_values logits = output_layer(outputs) return logits, state, attention return symbols_to_logits_fn, initial_state, batch_size trans_features = { "ids": features["ids"], "length": features["length"] } ae_features = { "ids": features["ids_ae"], "length": features["length_ae"] } trans_symbols_to_logits_fn, trans_initial_state, batch_size = get_info( local_model_trans, trans_features) ae_symbols_to_logits_fn, ae_initial_state, _ = get_info( local_model_ae, ae_features) start_tokens = tf.fill([batch_size], constants.START_OF_SENTENCE_ID) decoding_strategy = decoding_infer.BeamSearch(beam_size, length_penalty=0, coverage_penalty=0) sampler = decoding.BestSampler() #sampler = decoding.RandomSampler(from_top_k=1000) low_rate = 0.05 ids_ori = tf.contrib.seq2seq.tile_batch(features["ids_ori"], beam_size) pass_spe_token = tf.where(ids_ori > 2) appear_pos = tf.stack([ pass_spe_token[:, 0], tf.cast(tf.gather_nd(ids_ori, pass_spe_token), tf.int64) ], axis=1) low_prob = tf.sparse_to_dense(appear_pos, [ batch_size * beam_size, local_model_trans.labels_inputter.vocabulary_size ], low_rate, 0, False) print( "===============================================================" ) print(low_prob) low_prob = None sampled_ids, sampled_length = decoding_infer.dynamic_decode( trans_symbols_to_logits_fn, ae_symbols_to_logits_fn, local_model_trans.name, local_model_ae.name, start_tokens, end_id=constants.END_OF_SENTENCE_ID, initial_state_trans=trans_initial_state, initial_state_ae=ae_initial_state, decoding_strategy=decoding_strategy, sampler=sampler, maximum_iterations=150, minimum_iterations=0, attention_history=False, attention_size=None, low_prob=low_prob) sampled_length = tf.minimum(sampled_length + 1, tf.shape(sampled_ids)[2]) target_vocab_rev = local_model_trans.labels_inputter.vocabulary_lookup_reverse( ) target_tokens = target_vocab_rev.lookup( tf.cast(sampled_ids, tf.int64)) predictions = { "tokens": target_tokens, "length": sampled_length, } num_hypotheses = params.get("num_hypotheses", 1) if num_hypotheses > 0: if num_hypotheses > beam_size: raise ValueError( "n_best cannot be greater than beam_width") for key, value in six.iteritems(predictions): predictions[key] = value[:, :num_hypotheses] if ae_model != None: ae_init_checkpoint = params["ae_init_checkpoint"] ae_variables_map = get_pretrained_variables_map( ae_init_checkpoint) tf.contrib.framework.init_from_checkpoint( ae_init_checkpoint, ae_variables_map) trans_init_checkpoint = params["trans_init_checkpoint"] trans_variables_map = get_pretrained_variables_map( trans_init_checkpoint) tf.contrib.framework.init_from_checkpoint(trans_init_checkpoint, trans_variables_map) if "index" in features: predictions["index"] = features["index"] export_outputs = {} export_outputs[tf.saved_model.signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( tf.estimator.export.PredictOutput(predictions)) return tf.estimator.EstimatorSpec(mode, predictions=predictions, export_outputs=export_outputs) else: raise ValueError("Invalid mode")