Exemple #1
0
import openpyxl_lib as xlLib
import time
import numpy as np
# import matplotlib.pyplot as plt
# import pandas as pd

# path_to_folder = 'E:/Working/0 Submission CF approved annex5/Aprobadas y ajustadas por eco 19-01-2019/adjusted by eco/'
# path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/adjusted by eco/'
# path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Adjusted by Ecopetrol Jan 25 2019/'
# path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Adjusted by Eco Jan252019/'
path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Approved by GCA adjusted by GCA(SAI)/'
# path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/test 2/'
# cashFlowFiles = []

# Get column numbers
colNum_AX = xlLib.col2num('AX')     # oil price ($/BBL)
colNum_AY = xlLib.col2num('AY')     # oil offset calidad price ($/BBL)
colNum_AZ = xlLib.col2num('AZ')     # oil offset transporte price ($/BBL)
colNum_AQ = xlLib.col2num('AQ')     # net oil volume (BBL)
colNum_AR = xlLib.col2num('AR')     # fuel oil volume (BBL)
colNum_AS = xlLib.col2num('AS')     # net gas volume (MCF)
colNum_AO = xlLib.col2num('AO')     # royalties gas volume (MCF)
colNum_BA = xlLib.col2num('BA')     # gas calorific factor (MMBTU/MCF)
colNum_BB = xlLib.col2num('BB')     # gas price ($/MMBTU)
colNum_AU = xlLib.col2num('AU')     # propane volume (BBL)
colNum_AV = xlLib.col2num('AV')     # butane volume (BBL)
colNum_AW = xlLib.col2num('AW')     # gasoline volume (BBL)
colNum_AP = xlLib.col2num('AP')     # royalties NGL volume (BBL)
colNum_BC = xlLib.col2num('BC')     # propane price ($/BBL)
colNum_BD = xlLib.col2num('BD')     # butane price ($/BBL)
colNum_BE = xlLib.col2num('BE')     # gasoline price ($/BBL)
Exemple #2
0
    ws['T1'] = 'Reserves Net to Ecopetrol Interest'
    ws['T2'] = 'Oil'
    ws['T3'] = 'MBbl'
    ws['U2'] = 'Fuel Oil'
    ws['U3'] = 'MBbl'
    ws['V2'] = 'NGLs'
    ws['V3'] = 'MBbl'
    ws['W2'] = 'Gas'
    ws['W3'] = 'MMscf'
    ws['X2'] = 'Fuel Gas'
    ws['X3'] = 'MMscf'

    for i in range(fieldNames.shape[0]):  # 64 fields
        # field name
        _ = ws.cell(column=xlLib.col2num('A'), row=i + 4,
                    value=fieldNames[i])  # Field
        # oil
        _ = ws.cell(column=xlLib.col2num('B'), row=i + 4,
                    value=oil[i, 0, k])  # GTV, oil
        _ = ws.cell(column=xlLib.col2num('H'), row=i + 4,
                    value=oil[i, 1, k])  # GFV, oil
        _ = ws.cell(column=xlLib.col2num('N'), row=i + 4,
                    value=oil[i, 2, k])  # GFV to ECP, oil
        _ = ws.cell(column=xlLib.col2num('T'), row=i + 4,
                    value=oil[i, 3, k])  # Net to ECP, oil
        # fuel oil
        _ = ws.cell(column=xlLib.col2num('C'),
                    row=i + 4,
                    value=fuel_oil[i, 0, k])  # GTV, fuel oil
        _ = ws.cell(column=xlLib.col2num('I'),
import openpyxl
import openpyxl_lib as xlLib
import time
# import numpy as np
# import matplotlib.pyplot as plt
# import pandas as pd
# import Frac_ML_Library as fracmlLib

# path_to_folder = 'E:/Working/0 Submission CF approved annex5/Aprobadas y ajustadas por eco 19-01-2019/adjusted by eco/'
# path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/adjusted by eco/'
path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Approved by GCA adjusted by GCA(SAI)/'
# path_to_folder = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/test approved/'
# cashFlowFiles = []

# Get column numbers
colNum_C = xlLib.col2num('C')
colNum_D = xlLib.col2num('D')
colNum_G = xlLib.col2num('G')
colNum_H = xlLib.col2num('H')
colNum_J = xlLib.col2num('J')
colNum_K = xlLib.col2num('K')
colNum_L = xlLib.col2num('L')
colNum_O = xlLib.col2num('O')
colNum_P = xlLib.col2num('P')
colNum_R = xlLib.col2num('R')
colNum_S = xlLib.col2num('S')
colNum_T = xlLib.col2num('T')
colNum_W = xlLib.col2num('W')
colNum_AA = xlLib.col2num('AA')
colNum_AB = xlLib.col2num('AB')
colNum_AC = xlLib.col2num('AC')
Exemple #4
0
##
################################################################################

import os
import openpyxl
import openpyxl_lib as xlLib
import time
import numpy as np

path_to_source = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Annex 4 Jesus/Eco CF/'
path_to_annex3 = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Annex 4 Jesus/annex 3/'
path_to_target = 'C:/Users/212566876/Box Sync/Rotation 4/Ecopetrol Reserve Audit/Cashflow Fix/Annex 4 Jesus/CRColas/'

# Get column numbers
# source docs
colNum_AQ = xlLib.col2num('AQ')  # net Oil (BBL)
colNum_AS = xlLib.col2num('AS')  # net gas (MCF)
colNum_AU = xlLib.col2num('AU')  # net propane (BBL)
colNum_AV = xlLib.col2num('AV')  # net butane (BBL)
colNum_AW = xlLib.col2num('AW')  # net gasoline (BBL)

# -----------------------ANNEX 5------------------------------------------------
# source defintions & allocations
cashFlowList = [
    file for file in os.listdir(path_to_source) if file.endswith('.xlsx')
    and os.path.isfile(os.path.join(path_to_source, file))
]
cashFlowList.sort()  # sort alphabetically
numFields = len(cashFlowList)
netOil = np.zeros((61, 10, numFields))
netGas = np.zeros((61, 10, numFields))
Exemple #5
0
    and os.path.isfile(os.path.join(path_to_source, file))
]
fileList.sort()
numFields = len(fileList)
faulty_fields = []

# for loop to get all the data needed
for i, file in enumerate(fileList):
    startTime = time.time()  # start timer for loop duration (DEBUG)
    filePath = os.path.join(path_to_source, file)  # get file path
    wb = openpyxl.load_workbook(
        filePath, data_only=True)  # load workbook (data-only mode, faster)
    ws_gross = wb['Gross']
    data = []
    for rowNum in range(79, 141):
        data_row = [
            ws_gross.cell(row=rowNum, column=colNum).value
            for colNum in range(xlLib.col2num('B'), xlLib.col2num('BJ'))
        ]
        data.append(data_row)
    data = np.array(data)
    data = np.absolute(data)
    sum = np.sum(data)
    if sum != 0:
        faulty_fields.append(file)

# write fault fields list to text
with open('FID_field_list.txt', 'w') as f:
    for field in faulty_fields:
        f.write("{}\n".format(field))