def mfds2multimfd(mfds):
    """
    Convert a list of MFD nodes into a single MultiMFD node
    """
    _, kind = mfds[0].tag.split('}')
    node = Node('multiMFD', dict(kind=kind, size=len(mfds)))
    lengths = None
    for field in mfd.multi_mfd.ASSOC[kind][1:]:
        alias = mfd.multi_mfd.ALIAS.get(field, field)
        if field in ('magnitudes', 'occurRates'):
            data = [~getattr(m, field) for m in mfds]
            lengths = [len(d) for d in data]
            data = sum(data, [])  # list of lists
        else:
            try:
                data = [m[alias] for m in mfds]
            except KeyError:
                if alias == 'binWidth':
                    # missing bindWidth in GR MDFs is ok
                    continue
                else:
                    raise
        node.append(Node(field, text=collapse(data)))
        if lengths:  # this is the last field if present
            node.append(Node('lengths', text=collapse(lengths)))
    return node
Exemple #2
0
def mfds2multimfd(mfds):
    """
    Convert a list of MFD nodes into a single MultiMFD node
    """
    _, kind = mfds[0].tag.split('}')
    node = Node('multiMFD', dict(kind=kind))
    lengths = None
    for field in mfd.multi_mfd.ASSOC[kind][1:]:
        alias = mfd.multi_mfd.ALIAS.get(field, field)
        if field in ('magnitudes', 'occurRates'):
            data = [~getattr(m, field) for m in mfds]
            lengths = [len(d) for d in data]
            data = sum(data, [])  # the list has to be flat
        else:
            try:
                data = [m[alias] for m in mfds]
            except KeyError:
                if alias == 'binWidth':
                    # missing bindWidth in GR MDFs is ok
                    continue
                else:
                    raise
        node.append(Node(field, text=data))
        if lengths:  # this is the last field if present
            node.append(Node('lengths', text=lengths))
    return node
Exemple #3
0
def kite_surface_node(profiles):
    """
    :param profiles: a list of lists of points
    :returns: a Node of kind complexFaultGeometry
    """
    node = Node('kiteSurface')
    for profile in profiles:
        node.append(profile_node(profile))
    return node
Exemple #4
0
 def surface_nodes(self):
     """
     A single element list containing a planarSurface node
     """
     node = Node('planarSurface')
     for name, lon, lat, depth in zip(
             'topLeft topRight bottomLeft bottomRight'.split(),
             self.corner_lons, self.corner_lats, self.corner_depths):
         node.append(Node(name, dict(lon=lon, lat=lat, depth=depth)))
     return [node]
Exemple #5
0
 def surface_nodes(self):
     """
     A single element list containing a planarSurface node
     """
     node = Node('planarSurface')
     for name, lon, lat, depth in zip(
             'topLeft topRight bottomLeft bottomRight'.split(),
             self.corner_lons, self.corner_lats, self.corner_depths):
         node.append(Node(name, dict(lon=lon, lat=lat, depth=depth)))
     return [node]
Exemple #6
0
def build_slip_list_node(slip_list):
    """
    :param slip_list:
       an array of shape (N, 2) with columns (slip, weight)
    :returns:
        a hypoList node containing N slip nodes
    """
    sliplist = Node('slipList', {})
    for row in slip_list:
        sliplist.append(Node('slip', dict(weight=row[1]), row[0]))
    return sliplist
Exemple #7
0
def build_slip_list_node(slip_list):
    """
    :param slip_list:
       an array of shape (N, 2) with columns (slip, weight)
    :returns:
        a hypoList node containing N slip nodes
    """
    sliplist = Node('slipList', {})
    for row in slip_list:
        sliplist.append(
            Node('slip', dict(weight=row[1]), row[0]))
    return sliplist
Exemple #8
0
 def _read_csv(self, csvnames, dirname):
     """
     :param csvnames: names of csv files, space separated
     :param dirname: the directory where the csv files are
     :yields: asset nodes
     """
     expected_header = self._csv_header()
     fnames = [os.path.join(dirname, f) for f in csvnames.split()]
     for fname in fnames:
         with open(fname, encoding='utf-8') as f:
             fields = next(csv.reader(f))
             header = set(fields)
             if len(header) < len(fields):
                 raise InvalidFile(
                     '%s: The header %s contains a duplicated field' %
                     (fname, header))
             elif expected_header - header:
                 raise InvalidFile(
                     'Unexpected header in %s\nExpected: %s\nGot: %s' %
                     (fname, sorted(expected_header), sorted(header)))
     occupancy_periods = self.occupancy_periods.split()
     for fname in fnames:
         with open(fname, encoding='utf-8') as f:
             for i, dic in enumerate(csv.DictReader(f), 1):
                 asset = Node('asset', lineno=i)
                 with context(fname, asset):
                     asset['id'] = dic['id']
                     asset['number'] = valid.positivefloat(dic['number'])
                     asset['taxonomy'] = dic['taxonomy']
                     if 'area' in dic:  # optional attribute
                         asset['area'] = dic['area']
                     loc = Node(
                         'location',
                         dict(lon=valid.longitude(dic['lon']),
                              lat=valid.latitude(dic['lat'])))
                     costs = Node('costs')
                     for cost in self.cost_types['name']:
                         a = dict(type=cost, value=dic[cost])
                         costs.append(Node('cost', a))
                     occupancies = Node('occupancies')
                     for period in occupancy_periods:
                         a = dict(occupants=float(dic[period]),
                                  period=period)
                         occupancies.append(Node('occupancy', a))
                     tags = Node('tags')
                     for tagname in self.tagcol.tagnames:
                         if tagname != 'taxonomy':
                             tags.attrib[tagname] = dic[tagname]
                     asset.nodes.extend([loc, costs, occupancies, tags])
                     if i % 100000 == 0:
                         logging.info('Read %d assets', i)
                 yield asset
Exemple #9
0
 def dmg_dist_per_taxonomy_node(self, data):
     """
     :param data: a sequence of records with attributes .taxonomy,
                  .mean and .stddev
     :returns: a `dmgDistPerTaxonomy` node
     """
     node = Node('dmgDistPerTaxonomy', nodes=[self.dmg_states])
     data_by_taxo = groupby(data, operator.attrgetter('taxonomy'))
     for taxonomy in data_by_taxo:
         means = [row.mean for row in data_by_taxo[taxonomy]]
         stddevs = [row.stddev for row in data_by_taxo[taxonomy]]
         node.append(self.dd_node_taxo(taxonomy, means, stddevs))
     return node
Exemple #10
0
 def cm_node(self, loc, asset_refs, means, stddevs):
     """
     :param loc: a location object with attributes x and y
     :param asset_refs: asset reference strings
     :param means: array of means, one per asset
     :param stddevs: array of stddevs, one per asset
     :returns: a `CMNode` node
     """
     cm = Node('CMNode', nodes=[self.point_node(loc)])
     for asset_ref, mean, stddev in zip(asset_refs, means, stddevs):
         cf = Node('cf', dict(assetRef=asset_ref, mean=mean, stdDev=stddev))
         cm.append(cf)
     return cm
Exemple #11
0
def build_hypo_list_node(hypo_list):
    """
    :param hypo_list:
       an array of shape (N, 3) with columns (alongStrike, downDip, weight)
    :returns:
        a hypoList node containing N hypo nodes
    """
    hypolist = Node('hypoList', {})
    for row in hypo_list:
        n = Node(
            'hypo', dict(alongStrike=row[0], downDip=row[1], weight=row[2]))
        hypolist.append(n)
    return hypolist
Exemple #12
0
def build_hypo_list_node(hypo_list):
    """
    :param hypo_list:
       an array of shape (N, 3) with columns (alongStrike, downDip, weight)
    :returns:
        a hypoList node containing N hypo nodes
    """
    hypolist = Node('hypoList', {})
    for row in hypo_list:
        n = Node(
            'hypo', dict(alongStrike=row[0], downDip=row[1], weight=row[2]))
        hypolist.append(n)
    return hypolist
Exemple #13
0
 def _read_csv(self):
     """
     :yields: asset nodes
     """
     expected_header = self._csv_header()
     for fname in self.datafiles:
         with open(fname, encoding='utf-8') as f:
             fields = next(csv.reader(f))
             header = set(fields)
             if len(header) < len(fields):
                 raise InvalidFile(
                     '%s: The header %s contains a duplicated field' %
                     (fname, header))
             elif expected_header - header - {'exposure', 'country'}:
                 raise InvalidFile(
                     'Unexpected header in %s\nExpected: %s\nGot: %s' %
                     (fname, sorted(expected_header), sorted(header)))
     occupancy_periods = self.occupancy_periods.split()
     for fname in self.datafiles:
         with open(fname, encoding='utf-8') as f:
             for i, dic in enumerate(csv.DictReader(f), 1):
                 asset = Node('asset', lineno=i)
                 with context(fname, asset):
                     asset['id'] = dic['id']
                     asset['number'] = valid.positivefloat(dic['number'])
                     asset['taxonomy'] = dic['taxonomy']
                     if 'area' in dic:  # optional attribute
                         asset['area'] = dic['area']
                     loc = Node(
                         'location',
                         dict(lon=valid.longitude(dic['lon']),
                              lat=valid.latitude(dic['lat'])))
                     costs = Node('costs')
                     for cost in self.cost_types['name']:
                         a = dict(type=cost, value=dic[cost])
                         if 'retrofitted' in dic:
                             a['retrofitted'] = dic['retrofitted']
                         costs.append(Node('cost', a))
                     occupancies = Node('occupancies')
                     for period in occupancy_periods:
                         a = dict(occupants=float(dic[period]),
                                  period=period)
                         occupancies.append(Node('occupancy', a))
                     tags = Node('tags')
                     for tagname in self.tagcol.tagnames:
                         if tagname not in ('taxonomy', 'exposure',
                                            'country'):
                             tags.attrib[tagname] = dic[tagname]
                     asset.nodes.extend([loc, costs, occupancies, tags])
                 yield asset
Exemple #14
0
 def _read_csv(self):
     """
     :yields: asset nodes
     """
     expected_header = self._csv_header()
     for fname in self.datafiles:
         with open(fname, encoding='utf-8') as f:
             fields = next(csv.reader(f))
             header = set(fields)
             if len(header) < len(fields):
                 raise InvalidFile(
                     '%s: The header %s contains a duplicated field' %
                     (fname, header))
             elif expected_header - header - {'exposure', 'country'}:
                 raise InvalidFile(
                     'Unexpected header in %s\nExpected: %s\nGot: %s' %
                     (fname, sorted(expected_header), sorted(header)))
     occupancy_periods = self.occupancy_periods.split()
     for fname in self.datafiles:
         with open(fname, encoding='utf-8') as f:
             for i, dic in enumerate(csv.DictReader(f), 1):
                 asset = Node('asset', lineno=i)
                 with context(fname, asset):
                     asset['id'] = dic['id']
                     asset['number'] = valid.positivefloat(dic['number'])
                     asset['taxonomy'] = dic['taxonomy']
                     if 'area' in dic:  # optional attribute
                         asset['area'] = dic['area']
                     loc = Node('location',
                                dict(lon=valid.longitude(dic['lon']),
                                     lat=valid.latitude(dic['lat'])))
                     costs = Node('costs')
                     for cost in self.cost_types['name']:
                         a = dict(type=cost, value=dic[cost])
                         if 'retrofitted' in dic:
                             a['retrofitted'] = dic['retrofitted']
                         costs.append(Node('cost', a))
                     occupancies = Node('occupancies')
                     for period in occupancy_periods:
                         a = dict(occupants=float(dic[period]),
                                  period=period)
                         occupancies.append(Node('occupancy', a))
                     tags = Node('tags')
                     for tagname in self.tagcol.tagnames:
                         if tagname not in (
                                 'taxonomy', 'exposure', 'country'):
                             tags.attrib[tagname] = dic[tagname]
                     asset.nodes.extend([loc, costs, occupancies, tags])
                 yield asset
Exemple #15
0
 def dmg_dist_total_node(self, data):
     """
     :param data: a sequence of records with attributes .dmg_state,
                  .mean and .stddev
     :returns: a `totalDmgDist` node
     """
     total = Node('totalDmgDist', nodes=[self.dmg_states])
     for row in sorted(data, key=lambda r: r.dmg_state.lsi):
         damage = Node(
             'damage',
             dict(ds=row.dmg_state.dmg_state,
                  mean=row.mean,
                  stddev=row.stddev))
         total.append(damage)
     return total
Exemple #16
0
 def dmg_dist_per_asset_node(self, data):
     """
     :param data: a sequence of records with attributes .exposure_data,
                  .mean and .stddev
     :returns: a `dmgDistPerAsset` node
     """
     node = Node('dmgDistPerAsset', nodes=[self.dmg_states])
     data_by_location = groupby(data, lambda r: r.exposure_data.site)
     for loc in data_by_location:
         dd = Node('DDNode', nodes=[self.point_node(loc)])
         data_by_asset = groupby(
             data_by_location[loc], lambda r: r.exposure_data.asset_ref,
             lambda rows: [(r.mean, r.stddev) for r in rows])
         for asset_ref, data in data_by_asset.items():
             means, stddevs = zip(*data)
             dd.append(self.asset_node(asset_ref, means, stddevs))
         node.append(dd)
     return node
Exemple #17
0
 def collapse_map_node(self, data):
     """
     :param data: a sequence of records with attributes .exposure_data,
                  .mean and .stddev
     :returns: a `dmgDistPerAsset` node
     """
     node = Node('collapseMap')
     data_by_location = groupby(data, lambda r: r.exposure_data.site)
     for loc in data_by_location:
         asset_refs = []
         means = []
         stddevs = []
         for row in sorted(data_by_location[loc],
                           key=lambda r: r.exposure_data.asset_ref):
             asset_refs.append(row.exposure_data.asset_ref)
             means.append(row.mean)
             stddevs.append(row.stddev)
         node.append(self.cm_node(loc, asset_refs, means, stddevs))
     return node
def df_to_tree(tree_df, validate=True, omit=None, sub=None):
    '''
    Converts logic tree :class:`pandas.DataFrame` to tree of
    :class:`openquake.baselib.node.Node` objects which then be written to a
    file using :func:`openquake.hazardlib.nrml.write`.
    '''
    tree = Node('logicTree', {'logicTreeID': 'lt1'}, None)

    for i, level in tree_df.iterrows():

        branching_level_attr = {'branchingLevelID': 'bl%d' % (i + 1)}
        branching_level = Node('logicTreeBranchingLevel', branching_level_attr,
                               None)

        branch_set_attr = {
            'branchSetID': 'bs%d' % (i + 1),
            'uncertaintyType': level['uncertaintyType']
        }
        for key in level.keys():
            if 'applyTo' in key and level[key] != 'all':
                branch_set_attr.update({key: level[key]})

        if 'uncertaintyWeight' in level.keys():
            weights = level['uncertaintyWeight']
        else:
            weights = None

        models_weights = models_with_weights(level['uncertaintyType'],
                                             level['uncertaintyModel'],
                                             weights,
                                             branch_set_attr['branchSetID'],
                                             validate=validate,
                                             omit=omit,
                                             sub=sub)

        if not models_weights:
            continue

        add_branch_set(branching_level, branch_set_attr, models_weights)

        tree.append(branching_level)

    return tree
Exemple #19
0
def build_multi_mfd(mfd):
    """
    Parses the MultiMFD as a Node

    :param mfd:
        MFD as instance of :class:
        `openquake.hazardlib.mfd.multi_mfd.MultiMFD`
    :returns:
        Instance of :class:`openquake.baselib.node.Node`
    """
    node = Node("multiMFD", dict(kind=mfd.kind))
    for name in sorted(mfd.kwargs):
        values = mfd.kwargs[name]
        if name in ('magnitudes', 'occurRates'):
            values = sum(values, [])
        node.append(Node(name, text=values))
    if 'occurRates' in mfd.kwargs:
        lengths = [len(rates) for rates in mfd.kwargs['occurRates']]
        node.append(Node('lengths', text=lengths))
    return node
 def write(self, destination, source_model, name=None):
     """
     Exports to NRML
     """
     if os.path.exists(destination):
         os.remove(destination)
     self.destination = destination
     if name:
         source_model.name = name
     output_source_model = Node("sourceModel", {"name": name})
     dic = groupby(source_model.sources,
                   operator.itemgetter('tectonicRegion'))
     for i, (trt, srcs) in enumerate(dic.items(), 1):
         output_source_model.append(
             Node('sourceGroup',
                  {'tectonicRegion': trt, 'name': 'group %d' % i},
                  nodes=srcs))
     print("Exporting Source Model to %s" % self.destination)
     with open(self.destination, "wb") as f:
         nrml.write([output_source_model], f, "%s")
Exemple #21
0
def build_multi_mfd(mfd):
    """
    Parses the MultiMFD as a Node

    :param mfd:
        MFD as instance of :class:
        `openquake.hazardlib.mfd.multi_mfd.MultiMFD`
    :returns:
        Instance of :class:`openquake.baselib.node.Node`
    """
    node = Node("multiMFD", dict(kind=mfd.kind, size=mfd.size))
    for name in sorted(mfd.kwargs):
        values = mfd.kwargs[name]
        if name in ('magnitudes', 'occurRates'):
            values = sum(values, [])
        node.append(Node(name, text=values))
    if 'occurRates' in mfd.kwargs:
        lengths = [len(rates) for rates in mfd.kwargs['occurRates']]
        node.append(Node('lengths', text=lengths))
    return node
Exemple #22
0
def export_site_model(ekey, dstore):
    dest = dstore.export_path('site_model.xml')
    site_model_node = Node('siteModel')
    hdffields = 'lons lats vs30 vs30measured z1pt0 z2pt5 '.split()
    xmlfields = 'lon lat vs30 vs30Type z1pt0 z2pt5'.split()
    recs = [tuple(rec[f] for f in hdffields)
            for rec in dstore['sitecol'].array]
    unique_recs = sorted(set(recs))
    for rec in unique_recs:
        n = Node('site')
        for f, hdffield in enumerate(hdffields):
            xmlfield = xmlfields[f]
            if hdffield == 'vs30measured':
                value = 'measured' if rec[f] else 'inferred'
            else:
                value = rec[f]
            n[xmlfield] = value
        site_model_node.append(n)
    with open(dest, 'wb') as f:
        nrml.write([site_model_node], f)
    return [dest]
Exemple #23
0
def export_site_model(ekey, dstore):
    dest = dstore.export_path('site_model.xml')
    site_model_node = Node('siteModel')
    hdf2xml = dict(lons='lon', lats='lat', depths='depth',
                   vs30measured='vs30Type')
    for rec in dstore['sitecol'].array:
        n = Node('site')
        for hdffield in rec.dtype.names:
            if hdffield == 'sids':  # skip
                continue
            elif hdffield == 'depth' and rec[hdffield] == 0:
                continue
            xmlfield = hdf2xml.get(hdffield, hdffield)
            if hdffield == 'vs30measured':
                value = 'measured' if rec[hdffield] else 'inferred'
            else:
                value = rec[hdffield]
            n[xmlfield] = value
        site_model_node.append(n)
    with open(dest, 'wb') as f:
        nrml.write([site_model_node], f)
    return [dest]
Exemple #24
0
def complex_fault_node(edges):
    """
    :param edges: a list of lists of points
    :returns: a Node of kind complexFaultGeometry
    """
    node = Node('complexFaultGeometry')
    node.append(edge_node('faultTopEdge', edges[0]))
    for edge in edges[1:-1]:
        node.append(edge_node('intermediateEdge', edge))
    node.append(edge_node('faultBottomEdge', edges[-1]))
    return node
def complex_fault_node(edges):
    """
    :param edges: a list of lists of points
    :returns: a Node of kind complexFaultGeometry
    """
    node = Node('complexFaultGeometry')
    node.append(edge_node('faultTopEdge', edges[0]))
    for edge in edges[1:-1]:
        node.append(edge_node('intermediateEdge', edge))
    node.append(edge_node('faultBottomEdge', edges[-1]))
    return node
def simple_fault_node(fault_trace, dip, upper_depth, lower_depth):
    """
    :param fault_trace: an object with an attribute .points
    :param dip: dip parameter
    :param upper_depth: upper seismogenic depth
    :param lower_depth: lower seismogenic depth
    :returns: a Node of kind simpleFaultGeometry
    """
    node = Node('simpleFaultGeometry')
    line = []
    for p in fault_trace.points:
        line.append(p.longitude)
        line.append(p.latitude)
    node.append(Node('gml:LineString', nodes=[Node('gml:posList', {}, line)]))
    node.append(Node('dip', {}, dip))
    node.append(Node('upperSeismoDepth', {}, upper_depth))
    node.append(Node('lowerSeismoDepth', {}, lower_depth))
    return node
def simple_fault_node(fault_trace, dip, upper_depth, lower_depth):
    """
    :param fault_trace: an object with an attribute .points
    :param dip: dip parameter
    :param upper_depth: upper seismogenic depth
    :param lower_depth: lower seismogenic depth
    :returns: a Node of kind simpleFaultGeometry
    """
    node = Node('simpleFaultGeometry')
    line = []
    for p in fault_trace.points:
        line.append(p.longitude)
        line.append(p.latitude)
    node.append(Node('gml:LineString', nodes=[Node('gml:posList', {}, line)]))
    node.append(Node('dip', {}, dip))
    node.append(Node('upperSeismoDepth', {}, upper_depth))
    node.append(Node('lowerSeismoDepth', {}, lower_depth))
    return node
def add_branch_set(branching_level, branch_set_attr, models_weights):
    '''
    Add a branch set to a branching level.
    '''
    branch_set = Node('logicTreeBranchSet', branch_set_attr, None)
    branch_index_string = re.sub('[^0-9]', '', branch_set_attr['branchSetID'])

    if branch_index_string:
        branch_index = int(branch_index_string)
    else:
        branch_index = 999

    for j, (model, weight) in enumerate(models_weights):
        branch_attr = {'branchID': 'b%dm%d' % (branch_index, j + 1)}
        branch = Node('logicTreeBranch', branch_attr, None)
        branch.append(Node('uncertaintyModel', {}, model))
        branch.append(Node('uncertaintyWeight', {}, weight))

        branch_set.append(branch)

    branching_level.append(branch_set)
Exemple #29
0
def _pointsources2multipoints(srcs, i):
    # converts pointSources with the same hpdist, npdist and msr into a
    # single multiPointSource.
    allsources = []
    for (hd, npd, msr), sources in groupby(srcs, dists).items():
        if len(sources) == 1:  # there is a single source
            allsources.extend(sources)
            continue
        mfds = [src[3] for src in sources]
        points = []
        usd = []
        lsd = []
        rar = []
        for src in sources:
            pg = src.pointGeometry
            points.extend(~pg.Point.pos)
            usd.append(~pg.upperSeismoDepth)
            lsd.append(~pg.lowerSeismoDepth)
            rar.append(~src.ruptAspectRatio)
        geom = Node('multiPointGeometry')
        geom.append(Node('gml:posList', text=points))
        geom.append(Node('upperSeismoDepth', text=collapse(usd)))
        geom.append(Node('lowerSeismoDepth', text=collapse(lsd)))
        node = Node(
            'multiPointSource',
            dict(id='mps-%d' % i, name='multiPointSource-%d' % i),
            nodes=[geom])
        node.append(Node("magScaleRel", text=collapse(msr)))
        node.append(Node("ruptAspectRatio", text=collapse(rar)))
        node.append(mfds2multimfd(mfds))
        node.append(Node('nodalPlaneDist', nodes=[
            Node('nodalPlane', dict(probability=prob, rake=rake,
                                    strike=strike, dip=dip))
            for prob, rake, strike, dip in npd]))
        node.append(Node('hypoDepthDist', nodes=[
            Node('hypoDepth', dict(depth=depth, probability=prob))
            for prob, depth in hd]))
        allsources.append(node)
        i += 1
    return i, allsources
Exemple #30
0
def convert_fragility_model_04(node, fname, fmcounter=itertools.count(1)):
    """
    :param node:
        an :class:`openquake.commonib.node.Node` in NRML 0.4
    :param fname:
        path of the fragility file
    :returns:
        an :class:`openquake.commonib.node.Node` in NRML 0.5
    """
    convert_type = {"lognormal": "logncdf"}
    new = Node('fragilityModel',
               dict(assetCategory='building',
                    lossCategory='structural',
                    id='fm_%d_converted_from_NRML_04' %
                    next(fmcounter)))
    with context(fname, node):
        fmt = node['format']
        descr = ~node.description
        limit_states = ~node.limitStates
    new.append(Node('description', {}, descr))
    new.append((Node('limitStates', {}, ' '.join(limit_states))))
    for ffs in node[2:]:
        IML = ffs.IML
        # NB: noDamageLimit = None is different than zero
        nodamage = ffs.attrib.get('noDamageLimit')
        ff = Node('fragilityFunction', {'format': fmt})
        ff['id'] = ~ffs.taxonomy
        ff['shape'] = convert_type[ffs.attrib.get('type', 'lognormal')]
        if fmt == 'continuous':
            with context(fname, IML):
                attr = dict(imt=IML['IMT'],
                            minIML=IML['minIML'],
                            maxIML=IML['maxIML'])
                if nodamage is not None:
                    attr['noDamageLimit'] = nodamage
                ff.append(Node('imls', attr))
            for ffc in ffs[2:]:
                with context(fname, ffc):
                    ls = ffc['ls']
                    param = ffc.params
                with context(fname, param):
                    m, s = param['mean'], param['stddev']
                ff.append(Node('params', dict(ls=ls, mean=m, stddev=s)))
        else:  # discrete
            with context(fname, IML):
                imls = ' '.join(map(str, (~IML)[1]))
                attr = dict(imt=IML['IMT'])
            if nodamage is not None:
                attr['noDamageLimit'] = nodamage
            ff.append(Node('imls', attr, imls))
            for ffd in ffs[2:]:
                ls = ffd['ls']
                with context(fname, ffd):
                    poes = ' '.join(map(str, ~ffd.poEs))
                ff.append(Node('poes', dict(ls=ls), poes))
        new.append(ff)
    return new
Exemple #31
0
def _pointsources2multipoints(srcs, i):
    allsources = []
    for key, sources in groupby(srcs, get_key).items():
        if len(sources) == 1:  # there is a single source
            allsources.extend(sources)
            continue
        msr, rar, usd, lsd, hd, npd = key
        mfds = [src[3] for src in sources]
        points = []
        for src in sources:
            points.extend(~src.pointGeometry.Point.pos)
        geom = Node('multiPointGeometry')
        geom.append(Node('gml:posList', text=points))
        geom.append(Node('upperSeismoDepth', text=usd))
        geom.append(Node('lowerSeismoDepth', text=lsd))
        node = Node(
            'multiPointSource',
            dict(id='mps-%d' % i, name='multiPointSource-%d' % i),
            nodes=[geom])
        node.append(Node("magScaleRel", text=msr))
        node.append(Node("ruptAspectRatio", text=rar))
        node.append(mfds2multimfd(mfds))
        node.append(Node('nodalPlaneDist', nodes=[
            Node('nodalPlane', dict(probability=prob, rake=rake,
                                    strike=strike, dip=dip))
            for prob, rake, strike, dip in npd]))
        node.append(Node('hypoDepthDist', nodes=[
            Node('hypoDepth', dict(depth=depth, probability=prob))
            for prob, depth in hd]))
        allsources.append(node)
        i += 1
    return i, allsources
def _pointsources2multipoints(srcs, i):
    allsources = []
    for key, sources in groupby(srcs, get_key).items():
        if len(sources) == 1:  # there is a single source
            allsources.extend(sources)
            continue
        msr, rar, usd, lsd, hd, npd = key
        mfds = [src[3] for src in sources]
        points = []
        for src in sources:
            points.extend(~src.pointGeometry.Point.pos)
        geom = Node('multiPointGeometry')
        geom.append(Node('gml:posList', text=points))
        geom.append(Node('upperSeismoDepth', text=usd))
        geom.append(Node('lowerSeismoDepth', text=lsd))
        node = Node('multiPointSource',
                    dict(id='mps-%d' % i, name='multiPointSource-%d' % i),
                    nodes=[geom])
        node.append(Node("magScaleRel", text=msr))
        node.append(Node("ruptAspectRatio", text=rar))
        node.append(mfds2multimfd(mfds))
        node.append(
            Node('nodalPlaneDist',
                 nodes=[
                     Node(
                         'nodalPlane',
                         dict(probability=prob,
                              rake=rake,
                              strike=strike,
                              dip=dip)) for prob, rake, strike, dip in npd
                 ]))
        node.append(
            Node('hypoDepthDist',
                 nodes=[
                     Node('hypoDepth', dict(depth=depth, probability=prob))
                     for prob, depth in hd
                 ]))
        allsources.append(node)
        i += 1
    return i, allsources
Exemple #33
0
def convert_fragility_model_04(node, fname, fmcounter=itertools.count(1)):
    """
    :param node:
        an :class:`openquake.commonib.node.Node` in NRML 0.4
    :param fname:
        path of the fragility file
    :returns:
        an :class:`openquake.commonib.node.Node` in NRML 0.5
    """
    convert_type = {"lognormal": "logncdf"}
    new = Node(
        'fragilityModel',
        dict(assetCategory='building',
             lossCategory='structural',
             id='fm_%d_converted_from_NRML_04' % next(fmcounter)))
    with context(fname, node):
        fmt = node['format']
        descr = ~node.description
        limit_states = ~node.limitStates
    new.append(Node('description', {}, descr))
    new.append((Node('limitStates', {}, ' '.join(limit_states))))
    for ffs in node[2:]:
        IML = ffs.IML
        # NB: noDamageLimit = None is different than zero
        nodamage = ffs.attrib.get('noDamageLimit')
        ff = Node('fragilityFunction', {'format': fmt})
        ff['id'] = ~ffs.taxonomy
        ff['shape'] = convert_type[ffs.attrib.get('type', 'lognormal')]
        if fmt == 'continuous':
            with context(fname, IML):
                attr = dict(imt=IML['IMT'],
                            minIML=IML['minIML'],
                            maxIML=IML['maxIML'])
                if nodamage is not None:
                    attr['noDamageLimit'] = nodamage
                ff.append(Node('imls', attr))
            for ffc in ffs[2:]:
                with context(fname, ffc):
                    ls = ffc['ls']
                    param = ffc.params
                with context(fname, param):
                    m, s = param['mean'], param['stddev']
                ff.append(Node('params', dict(ls=ls, mean=m, stddev=s)))
        else:  # discrete
            with context(fname, IML):
                imls = ' '.join(map(str, (~IML)[1]))
                attr = dict(imt=IML['IMT'])
            if nodamage is not None:
                attr['noDamageLimit'] = nodamage
            ff.append(Node('imls', attr, imls))
            for ffd in ffs[2:]:
                ls = ffd['ls']
                with context(fname, ffd):
                    poes = ' '.join(map(str, ~ffd.poEs))
                ff.append(Node('poes', dict(ls=ls), poes))
        new.append(ff)
    return new
Exemple #34
0
def _pointsources2multipoints(srcs, i):
    # converts pointSources with the same hpdist, npdist and msr into a
    # single multiPointSource.
    allsources = []
    for (hd, npd, msr), sources in groupby(srcs, dists).items():
        if len(sources) == 1:  # there is a single source
            allsources.extend(sources)
            continue
        mfds = [src[3] for src in sources]
        points = []
        usd = []
        lsd = []
        rar = []
        for src in sources:
            pg = src.pointGeometry
            points.extend(~pg.Point.pos)
            usd.append(~pg.upperSeismoDepth)
            lsd.append(~pg.lowerSeismoDepth)
            rar.append(~src.ruptAspectRatio)
        geom = Node('multiPointGeometry')
        geom.append(Node('gml:posList', text=points))
        geom.append(Node('upperSeismoDepth', text=collapse(usd)))
        geom.append(Node('lowerSeismoDepth', text=collapse(lsd)))
        node = Node('multiPointSource',
                    dict(id='mps-%d' % i, name='multiPointSource-%d' % i),
                    nodes=[geom])
        node.append(Node("magScaleRel", text=collapse(msr)))
        node.append(Node("ruptAspectRatio", text=collapse(rar)))
        node.append(mfds2multimfd(mfds))
        node.append(
            Node('nodalPlaneDist',
                 nodes=[
                     Node(
                         'nodalPlane',
                         dict(probability=prob,
                              rake=rake,
                              strike=strike,
                              dip=dip)) for prob, rake, strike, dip in npd
                 ]))
        node.append(
            Node('hypoDepthDist',
                 nodes=[
                     Node('hypoDepth', dict(depth=depth, probability=prob))
                     for prob, depth in hd
                 ]))
        allsources.append(node)
        i += 1
    return i, allsources