Exemple #1
0
 def test_get_site_model(self):
     oqparam = mock.Mock()
     oqparam.base_path = '/'
     oqparam.inputs = dict(site_model=sitemodel())
     expected = [
         valid.SiteParam(z1pt0=100.0,
                         z2pt5=2.0,
                         measured=False,
                         vs30=1200.0,
                         backarc=False,
                         lon=0.0,
                         lat=0.0,
                         depth=0.0),
         valid.SiteParam(z1pt0=100.0,
                         z2pt5=2.0,
                         measured=False,
                         vs30=600.0,
                         backarc=True,
                         lon=0.0,
                         lat=0.1,
                         depth=0.0),
         valid.SiteParam(z1pt0=100.0,
                         z2pt5=2.0,
                         measured=False,
                         vs30=200.0,
                         backarc=False,
                         lon=0.0,
                         lat=0.2,
                         depth=0.0)
     ]
     self.assertEqual(list(readinput.get_site_model(oqparam)), expected)
Exemple #2
0
 def test_get_site_model(self):
     oqparam = mock.Mock()
     oqparam.base_path = '/'
     oqparam.inputs = dict(site_model=sitemodel())
     expected = [
         valid.SiteParam(z1pt0=100.0, z2pt5=2.0, measured=False,
                         vs30=1200.0, backarc=False, lon=0.0, lat=0.0),
         valid.SiteParam(z1pt0=100.0, z2pt5=2.0, measured=False,
                         vs30=600.0, backarc=True, lon=0.0, lat=0.1),
         valid.SiteParam(z1pt0=100.0, z2pt5=2.0, measured=False,
                         vs30=200.0, backarc=False, lon=0.0, lat=0.2)]
     self.assertEqual(list(readinput.get_site_model(oqparam)), expected)
Exemple #3
0
    def initialize_site_collection(self):
        """
        Populate the hazard site table and create a sitecollection attribute.
        """
        logs.LOG.progress("initializing sites")
        points, site_ids = self.job.save_hazard_sites()
        if not site_ids:
            raise RuntimeError('No sites were imported!')

        logs.LOG.progress("initializing site collection")
        oqparam = self.job.get_oqparam()
        if 'site_model' in oqparam.inputs:
            sm_params = SiteModelParams(
                self.job, get_site_model(oqparam))
        else:
            sm_params = None
        self.site_collection = get_site_collection(
            oqparam, points, site_ids, sm_params)
Exemple #4
0
    def test_get_site_model(self):
        data = BytesIO(b'''\
<?xml version="1.0" encoding="utf-8"?>
<nrml xmlns:gml="http://www.opengis.net/gml"
      xmlns="http://openquake.org/xmlns/nrml/0.4">
    <siteModel>
        <site lon="0.0" lat="0.0" vs30="1200.0" vs30Type="inferred" z1pt0="100.0" z2pt5="2.0" backarc="False" />
        <site lon="0.0" lat="0.1" vs30="600.0" vs30Type="inferred" z1pt0="100.0" z2pt5="2.0" backarc="True" />
        <site lon="0.0" lat="0.2" vs30="200.0" vs30Type="inferred" z1pt0="100.0" z2pt5="2.0" backarc="False" />
    </siteModel>
</nrml>''')
        oqparam = mock.Mock()
        oqparam.inputs = dict(site_model=data)
        expected = [
            valid.SiteParam(z1pt0=100.0, z2pt5=2.0, measured=False,
                            vs30=1200.0, backarc=False, lon=0.0, lat=0.0),
            valid.SiteParam(z1pt0=100.0, z2pt5=2.0, measured=False,
                            vs30=600.0, backarc=True, lon=0.0, lat=0.1),
            valid.SiteParam(z1pt0=100.0, z2pt5=2.0, measured=False,
                            vs30=200.0, backarc=False, lon=0.0, lat=0.2)]
        self.assertEqual(list(readinput.get_site_model(oqparam)), expected)
Exemple #5
0
 def test_get_site_model(self):
     oqparam = mock.Mock()
     oqparam.base_path = '/'
     oqparam.inputs = dict(site_model=sitemodel())
     self.assertEqual(len(readinput.get_site_model(oqparam)), 3)
Exemple #6
0
    def _read_risk_data(self):
        # read the exposure (if any), the risk model (if any) and then the
        # site collection, possibly extracted from the exposure.
        oq = self.oqparam
        self.load_crmodel()  # must be called first

        if oq.hazard_calculation_id:
            with util.read(oq.hazard_calculation_id) as dstore:
                haz_sitecol = dstore['sitecol'].complete
                if ('amplification' in oq.inputs and
                        'ampcode' not in haz_sitecol.array.dtype.names):
                    haz_sitecol.add_col('ampcode', site.ampcode_dt)
        else:
            haz_sitecol = readinput.get_site_collection(oq)
            if hasattr(self, 'rup'):
                # for scenario we reduce the site collection to the sites
                # within the maximum distance from the rupture
                haz_sitecol, _dctx = self.cmaker.filter(
                    haz_sitecol, self.rup)
                haz_sitecol.make_complete()

            if 'site_model' in oq.inputs:
                self.datastore['site_model'] = readinput.get_site_model(oq)

        oq_hazard = (self.datastore.parent['oqparam']
                     if self.datastore.parent else None)
        if 'exposure' in oq.inputs:
            exposure = self.read_exposure(haz_sitecol)
            self.datastore['assetcol'] = self.assetcol
            self.datastore['cost_calculator'] = exposure.cost_calculator
            if hasattr(readinput.exposure, 'exposures'):
                self.datastore['assetcol/exposures'] = (
                    numpy.array(exposure.exposures, hdf5.vstr))
        elif 'assetcol' in self.datastore.parent:
            assetcol = self.datastore.parent['assetcol']
            if oq.region:
                region = wkt.loads(oq.region)
                self.sitecol = haz_sitecol.within(region)
            if oq.shakemap_id or 'shakemap' in oq.inputs:
                self.sitecol, self.assetcol = self.read_shakemap(
                    haz_sitecol, assetcol)
                self.datastore['assetcol'] = self.assetcol
                logging.info('Extracted %d/%d assets',
                             len(self.assetcol), len(assetcol))
                nsites = len(self.sitecol)
                if (oq.spatial_correlation != 'no' and
                        nsites > MAXSITES):  # hard-coded, heuristic
                    raise ValueError(CORRELATION_MATRIX_TOO_LARGE % nsites)
            elif hasattr(self, 'sitecol') and general.not_equal(
                    self.sitecol.sids, haz_sitecol.sids):
                self.assetcol = assetcol.reduce(self.sitecol)
                self.datastore['assetcol'] = self.assetcol
                logging.info('Extracted %d/%d assets',
                             len(self.assetcol), len(assetcol))
            else:
                self.assetcol = assetcol
        else:  # no exposure
            self.sitecol = haz_sitecol
            if self.sitecol:
                logging.info('Read N=%d hazard sites and L=%d hazard levels',
                             len(self.sitecol), len(oq.imtls.array))

        if oq_hazard:
            parent = self.datastore.parent
            if 'assetcol' in parent:
                check_time_event(oq, parent['assetcol'].occupancy_periods)
            elif oq.job_type == 'risk' and 'exposure' not in oq.inputs:
                raise ValueError('Missing exposure both in hazard and risk!')
            if oq_hazard.time_event and oq_hazard.time_event != oq.time_event:
                raise ValueError(
                    'The risk configuration file has time_event=%s but the '
                    'hazard was computed with time_event=%s' % (
                        oq.time_event, oq_hazard.time_event))

        if oq.job_type == 'risk':
            tmap_arr, tmap_lst = logictree.taxonomy_mapping(
                self.oqparam.inputs.get('taxonomy_mapping'),
                self.assetcol.tagcol.taxonomy)
            self.crmodel.tmap = tmap_lst
            if len(tmap_arr):
                self.datastore['taxonomy_mapping'] = tmap_arr
            taxonomies = set(taxo for items in self.crmodel.tmap
                             for taxo, weight in items if taxo != '?')
            # check that we are covering all the taxonomies in the exposure
            missing = taxonomies - set(self.crmodel.taxonomies)
            if self.crmodel and missing:
                raise RuntimeError('The exposure contains the taxonomies %s '
                                   'which are not in the risk model' % missing)
            if len(self.crmodel.taxonomies) > len(taxonomies):
                logging.info('Reducing risk model from %d to %d taxonomies',
                             len(self.crmodel.taxonomies), len(taxonomies))
                self.crmodel = self.crmodel.reduce(taxonomies)
                self.crmodel.tmap = tmap_lst
            self.crmodel.vectorize_cons_model(self.assetcol.tagcol)

        if hasattr(self, 'sitecol') and self.sitecol:
            if 'site_model' in oq.inputs:
                assoc_dist = (oq.region_grid_spacing * 1.414
                              if oq.region_grid_spacing else 5)  # Graeme's 5km
                sm = readinput.get_site_model(oq)
                self.sitecol.complete.assoc(sm, assoc_dist)
            self.datastore['sitecol'] = self.sitecol.complete

        # store amplification functions if any
        if 'amplification' in oq.inputs:
            logging.info('Reading %s', oq.inputs['amplification'])
            self.datastore['amplification'] = readinput.get_amplification(oq)
            check_amplification(self.datastore)
            self.amplifier = Amplifier(
                oq.imtls, self.datastore['amplification'], oq.soil_intensities)
            self.amplifier.check(self.sitecol.vs30, oq.vs30_tolerance)
        else:
            self.amplifier = None

        # used in the risk calculators
        self.param = dict(individual_curves=oq.individual_curves,
                          avg_losses=oq.avg_losses, amplifier=self.amplifier)

        # compute exposure stats
        if hasattr(self, 'assetcol'):
            save_exposed_values(
                self.datastore, self.assetcol, oq.loss_names, oq.aggregate_by)
Exemple #7
0
    def _read_risk_data(self):
        # read the exposure (if any), the risk model (if any) and then the
        # site collection, possibly extracted from the exposure.
        oq = self.oqparam
        self.load_riskmodel()  # must be called first

        if oq.hazard_calculation_id:
            with util.read(oq.hazard_calculation_id) as dstore:
                haz_sitecol = dstore['sitecol'].complete
        else:
            haz_sitecol = readinput.get_site_collection(oq)
            if hasattr(self, 'rup'):
                # for scenario we reduce the site collection to the sites
                # within the maximum distance from the rupture
                haz_sitecol, _dctx = self.cmaker.filter(
                    haz_sitecol, self.rup)
                haz_sitecol.make_complete()

            if 'site_model' in oq.inputs:
                self.datastore['site_model'] = readinput.get_site_model(oq)

        oq_hazard = (self.datastore.parent['oqparam']
                     if self.datastore.parent else None)
        if 'exposure' in oq.inputs:
            exposure = self.read_exposure(haz_sitecol)
            self.datastore['assetcol'] = self.assetcol
            self.datastore['assetcol/num_taxonomies'] = (
                self.assetcol.num_taxonomies_by_site())
            if hasattr(readinput.exposure, 'exposures'):
                self.datastore['assetcol/exposures'] = (
                    numpy.array(exposure.exposures, hdf5.vstr))
        elif 'assetcol' in self.datastore.parent:
            assetcol = self.datastore.parent['assetcol']
            if oq.region:
                region = wkt.loads(oq.region)
                self.sitecol = haz_sitecol.within(region)
            if oq.shakemap_id or 'shakemap' in oq.inputs:
                self.sitecol, self.assetcol = self.read_shakemap(
                    haz_sitecol, assetcol)
                self.datastore['assetcol'] = self.assetcol
                logging.info('Extracted %d/%d assets',
                             len(self.assetcol), len(assetcol))
                nsites = len(self.sitecol)
                if (oq.spatial_correlation != 'no' and
                        nsites > MAXSITES):  # hard-coded, heuristic
                    raise ValueError(CORRELATION_MATRIX_TOO_LARGE % nsites)
            elif hasattr(self, 'sitecol') and general.not_equal(
                    self.sitecol.sids, haz_sitecol.sids):
                self.assetcol = assetcol.reduce(self.sitecol)
                self.datastore['assetcol'] = self.assetcol
                self.datastore['assetcol/num_taxonomies'] = (
                    self.assetcol.num_taxonomies_by_site())
                logging.info('Extracted %d/%d assets',
                             len(self.assetcol), len(assetcol))
            else:
                self.assetcol = assetcol
        else:  # no exposure
            self.sitecol = haz_sitecol
            if self.sitecol:
                logging.info('Read %d hazard sites', len(self.sitecol))

        if oq_hazard:
            parent = self.datastore.parent
            if 'assetcol' in parent:
                check_time_event(oq, parent['assetcol'].occupancy_periods)
            elif oq.job_type == 'risk' and 'exposure' not in oq.inputs:
                raise ValueError('Missing exposure both in hazard and risk!')
            if oq_hazard.time_event and oq_hazard.time_event != oq.time_event:
                raise ValueError(
                    'The risk configuration file has time_event=%s but the '
                    'hazard was computed with time_event=%s' % (
                        oq.time_event, oq_hazard.time_event))

        if oq.job_type == 'risk':
            taxonomies = set(taxo for taxo in self.assetcol.tagcol.taxonomy
                             if taxo != '?')

            # check that we are covering all the taxonomies in the exposure
            missing = taxonomies - set(self.riskmodel.taxonomies)
            if self.riskmodel and missing:
                raise RuntimeError('The exposure contains the taxonomies %s '
                                   'which are not in the risk model' % missing)

            # same check for the consequence models, if any
            consequence_models = riskmodels.get_risk_models(
                oq, 'consequence')
            for lt, cm in consequence_models.items():
                missing = taxonomies - set(cm)
                if missing:
                    raise ValueError(
                        'Missing consequenceFunctions for %s' %
                        ' '.join(missing))

        if hasattr(self, 'sitecol') and self.sitecol:
            self.datastore['sitecol'] = self.sitecol.complete
        # used in the risk calculators
        self.param = dict(individual_curves=oq.individual_curves,
                          avg_losses=oq.avg_losses)

        # store the `exposed_value` if there is an exposure
        if 'exposed_value' not in set(self.datastore) and hasattr(
                self, 'assetcol'):
            self.datastore['exposed_value'] = self.assetcol.agg_value(
                *oq.aggregate_by)
Exemple #8
0
    def _read_risk_data(self):
        # read the risk model (if any), the exposure (if any) and then the
        # site collection, possibly extracted from the exposure.
        oq = self.oqparam
        self.load_crmodel()  # must be called first
        if (not oq.imtls and 'shakemap' not in oq.inputs
                and oq.ground_motion_fields):
            raise InvalidFile('There are no intensity measure types in %s' %
                              oq.inputs['job_ini'])
        if oq.hazard_calculation_id:
            with util.read(oq.hazard_calculation_id) as dstore:
                haz_sitecol = dstore['sitecol'].complete
                if ('amplification' in oq.inputs
                        and 'ampcode' not in haz_sitecol.array.dtype.names):
                    haz_sitecol.add_col('ampcode', site.ampcode_dt)
        else:
            haz_sitecol = readinput.get_site_collection(oq, self.datastore)
            if hasattr(self, 'rup'):
                # for scenario we reduce the site collection to the sites
                # within the maximum distance from the rupture
                haz_sitecol, _dctx = self.cmaker.filter(haz_sitecol, self.rup)
                haz_sitecol.make_complete()

            if 'site_model' in oq.inputs:
                self.datastore['site_model'] = readinput.get_site_model(oq)

        oq_hazard = (self.datastore.parent['oqparam']
                     if self.datastore.parent else None)
        if 'exposure' in oq.inputs:
            exposure = self.read_exposure(haz_sitecol)
            self.datastore['assetcol'] = self.assetcol
            self.datastore['cost_calculator'] = exposure.cost_calculator
            if hasattr(readinput.exposure, 'exposures'):
                self.datastore['assetcol/exposures'] = (numpy.array(
                    exposure.exposures, hdf5.vstr))
        elif 'assetcol' in self.datastore.parent:
            assetcol = self.datastore.parent['assetcol']
            if oq.region:
                region = wkt.loads(oq.region)
                self.sitecol = haz_sitecol.within(region)
            if oq.shakemap_id or 'shakemap' in oq.inputs:
                self.sitecol, self.assetcol = self.read_shakemap(
                    haz_sitecol, assetcol)
                self.datastore['sitecol'] = self.sitecol
                self.datastore['assetcol'] = self.assetcol
                logging.info('Extracted %d/%d assets', len(self.assetcol),
                             len(assetcol))
                nsites = len(self.sitecol)
                if (oq.spatial_correlation != 'no'
                        and nsites > MAXSITES):  # hard-coded, heuristic
                    raise ValueError(CORRELATION_MATRIX_TOO_LARGE % nsites)
            elif hasattr(self, 'sitecol') and general.not_equal(
                    self.sitecol.sids, haz_sitecol.sids):
                self.assetcol = assetcol.reduce(self.sitecol)
                self.datastore['assetcol'] = self.assetcol
                logging.info('Extracted %d/%d assets', len(self.assetcol),
                             len(assetcol))
            else:
                self.assetcol = assetcol
        else:  # no exposure
            self.sitecol = haz_sitecol
            if self.sitecol and oq.imtls:
                logging.info('Read N=%d hazard sites and L=%d hazard levels',
                             len(self.sitecol), oq.imtls.size)

        if oq_hazard:
            parent = self.datastore.parent
            if 'assetcol' in parent:
                check_time_event(oq, parent['assetcol'].occupancy_periods)
            elif oq.job_type == 'risk' and 'exposure' not in oq.inputs:
                raise ValueError('Missing exposure both in hazard and risk!')
            if oq_hazard.time_event and oq_hazard.time_event != oq.time_event:
                raise ValueError(
                    'The risk configuration file has time_event=%s but the '
                    'hazard was computed with time_event=%s' %
                    (oq.time_event, oq_hazard.time_event))

        if oq.job_type == 'risk':
            tmap_arr, tmap_lst = logictree.taxonomy_mapping(
                self.oqparam.inputs.get('taxonomy_mapping'),
                self.assetcol.tagcol.taxonomy)
            self.crmodel.tmap = tmap_lst
            if len(tmap_arr):
                self.datastore['taxonomy_mapping'] = tmap_arr
            taxonomies = set(taxo for items in self.crmodel.tmap
                             for taxo, weight in items if taxo != '?')
            # check that we are covering all the taxonomies in the exposure
            missing = taxonomies - set(self.crmodel.taxonomies)
            if self.crmodel and missing:
                raise RuntimeError('The exposure contains the taxonomies %s '
                                   'which are not in the risk model' % missing)
            if len(self.crmodel.taxonomies) > len(taxonomies):
                logging.info('Reducing risk model from %d to %d taxonomies',
                             len(self.crmodel.taxonomies), len(taxonomies))
                self.crmodel = self.crmodel.reduce(taxonomies)
                self.crmodel.tmap = tmap_lst
            self.crmodel.reduce_cons_model(self.assetcol.tagcol)

        if hasattr(self, 'sitecol') and self.sitecol:
            if 'site_model' in oq.inputs:
                assoc_dist = (oq.region_grid_spacing *
                              1.414 if oq.region_grid_spacing else 5
                              )  # Graeme's 5km
                sm = readinput.get_site_model(oq)
                self.sitecol.complete.assoc(sm, assoc_dist)
                self.datastore['sitecol'] = self.sitecol

        # store amplification functions if any
        self.af = None
        if 'amplification' in oq.inputs:
            logging.info('Reading %s', oq.inputs['amplification'])
            df = readinput.get_amplification(oq)
            check_amplification(df, self.sitecol)
            self.amplifier = Amplifier(oq.imtls, df, oq.soil_intensities)
            if oq.amplification_method == 'kernel':
                # TODO: need to add additional checks on the main calculation
                # methodology since the kernel method is currently tested only
                # for classical PSHA
                self.af = AmplFunction.from_dframe(df)
                self.amplifier = None
        else:
            self.amplifier = None

        # manage secondary perils
        sec_perils = oq.get_sec_perils()
        for sp in sec_perils:
            sp.prepare(self.sitecol)  # add columns as needed

        mal = {
            lt: getdefault(oq.minimum_asset_loss, lt)
            for lt in oq.loss_names
        }
        if mal:
            logging.info('minimum_asset_loss=%s', mal)
        self.param = dict(individual_curves=oq.individual_curves,
                          ps_grid_spacing=oq.ps_grid_spacing,
                          collapse_level=oq.collapse_level,
                          split_sources=oq.split_sources,
                          avg_losses=oq.avg_losses,
                          amplifier=self.amplifier,
                          sec_perils=sec_perils,
                          ses_seed=oq.ses_seed,
                          minimum_asset_loss=mal)

        # compute exposure stats
        if hasattr(self, 'assetcol'):
            save_agg_values(self.datastore, self.assetcol, oq.loss_names,
                            oq.aggregate_by)
Exemple #9
0
    def _read_risk_data(self):
        # read the exposure (if any), the risk model (if any) and then the
        # site collection, possibly extracted from the exposure.
        oq = self.oqparam
        self.load_riskmodel()  # must be called first

        if oq.hazard_calculation_id:
            with util.read(oq.hazard_calculation_id) as dstore:
                haz_sitecol = dstore['sitecol'].complete
        else:
            haz_sitecol = readinput.get_site_collection(oq)
            if hasattr(self, 'rup'):
                # for scenario we reduce the site collection to the sites
                # within the maximum distance from the rupture
                haz_sitecol, _dctx = self.cmaker.filter(
                    haz_sitecol, self.rup)
                haz_sitecol.make_complete()

            if 'site_model' in oq.inputs:
                self.datastore['site_model'] = readinput.get_site_model(oq)

        oq_hazard = (self.datastore.parent['oqparam']
                     if self.datastore.parent else None)
        if 'exposure' in oq.inputs:
            exposure = self.read_exposure(haz_sitecol)
            self.datastore['assetcol'] = self.assetcol
            self.datastore['assetcol/num_taxonomies'] = (
                self.assetcol.num_taxonomies_by_site())
            if hasattr(readinput.exposure, 'exposures'):
                self.datastore['assetcol/exposures'] = (
                    numpy.array(exposure.exposures, hdf5.vstr))
        elif 'assetcol' in self.datastore.parent:
            assetcol = self.datastore.parent['assetcol']
            if oq.region:
                region = wkt.loads(oq.region)
                self.sitecol = haz_sitecol.within(region)
            if oq.shakemap_id or 'shakemap' in oq.inputs:
                self.sitecol, self.assetcol = self.read_shakemap(
                    haz_sitecol, assetcol)
                self.datastore['assetcol'] = self.assetcol
                logging.info('Extracted %d/%d assets',
                             len(self.assetcol), len(assetcol))
                nsites = len(self.sitecol)
                if (oq.spatial_correlation != 'no' and
                        nsites > MAXSITES):  # hard-coded, heuristic
                    raise ValueError(CORRELATION_MATRIX_TOO_LARGE % nsites)
            elif hasattr(self, 'sitecol') and general.not_equal(
                    self.sitecol.sids, haz_sitecol.sids):
                self.assetcol = assetcol.reduce(self.sitecol)
                self.datastore['assetcol'] = self.assetcol
                self.datastore['assetcol/num_taxonomies'] = (
                    self.assetcol.num_taxonomies_by_site())
                logging.info('Extracted %d/%d assets',
                             len(self.assetcol), len(assetcol))
            else:
                self.assetcol = assetcol
        else:  # no exposure
            self.sitecol = haz_sitecol
            if self.sitecol:
                logging.info('Read %d hazard sites', len(self.sitecol))

        if oq_hazard:
            parent = self.datastore.parent
            if 'assetcol' in parent:
                check_time_event(oq, parent['assetcol'].occupancy_periods)
            elif oq.job_type == 'risk' and 'exposure' not in oq.inputs:
                raise ValueError('Missing exposure both in hazard and risk!')
            if oq_hazard.time_event and oq_hazard.time_event != oq.time_event:
                raise ValueError(
                    'The risk configuration file has time_event=%s but the '
                    'hazard was computed with time_event=%s' % (
                        oq.time_event, oq_hazard.time_event))

        if oq.job_type == 'risk':
            taxonomies = set(taxo for taxo in self.assetcol.tagcol.taxonomy
                             if taxo != '?')

            # check that we are covering all the taxonomies in the exposure
            missing = taxonomies - set(self.riskmodel.taxonomies)
            if self.riskmodel and missing:
                raise RuntimeError('The exposure contains the taxonomies %s '
                                   'which are not in the risk model' % missing)

            # same check for the consequence models, if any
            if any(key.endswith('_consequence') for key in oq.inputs):
                for taxonomy in taxonomies:
                    cfs = self.riskmodel[taxonomy].consequence_functions
                    if not cfs:
                        raise ValueError(
                            'Missing consequenceFunctions for %s' % taxonomy)

        if hasattr(self, 'sitecol') and self.sitecol:
            self.datastore['sitecol'] = self.sitecol.complete
        # used in the risk calculators
        self.param = dict(individual_curves=oq.individual_curves,
                          avg_losses=oq.avg_losses)

        # store the `exposed_value` if there is an exposure
        if 'exposed_value' not in set(self.datastore) and hasattr(
                self, 'assetcol'):
            self.datastore['exposed_value'] = self.assetcol.agg_value(
                *oq.aggregate_by)