Exemple #1
0
 def pre_execute(self):
     """
     Inherited from core.EventBasedRiskCalculator.pre_execute.
     Enforces no correlation, both on GMFs and assets.
     """
     correl_model = models.get_correl_model(self.job)
     assert correl_model is None, correl_model
     assert not self.rc.asset_correlation, self.rc.asset_correlation
     core.EventBasedRiskCalculator.pre_execute(self)
Exemple #2
0
def compute_gmfs_and_curves(job_id, ses_ruptures, sitecol):
    """
    :param int job_id:
        ID of the currently running job
    :param ses_ruptures:
        a list of blocks of SESRuptures with homogeneous TrtModel
    :param sitecol:
        a :class:`openquake.hazardlib.site.SiteCollection` instance
    :returns:
        a dictionary trt_model_id -> (curves_by_gsim, bounding_boxes)
        where the list of bounding boxes is empty
    """
    job = models.OqJob.objects.get(pk=job_id)
    hc = job.get_oqparam()
    imts = map(from_string, sorted(hc.intensity_measure_types_and_levels))

    result = {}  # trt_model_id -> (curves_by_gsim, [])
    # NB: by construction each block is a non-empty list with
    # ruptures of homogeneous trt_model
    trt_model = ses_ruptures[0].rupture.ses_collection.trt_model
    rlzs_by_gsim = trt_model.get_rlzs_by_gsim()
    gsims = [logictree.GSIM[gsim]() for gsim in rlzs_by_gsim]
    calc = GmfCalculator(
        sorted(imts), sorted(gsims), trt_model.id,
        getattr(hc, 'truncation_level', None), models.get_correl_model(job))

    with EnginePerformanceMonitor(
            'computing gmfs', job_id, compute_gmfs_and_curves):
        for rupture, group in itertools.groupby(
                ses_ruptures, operator.attrgetter('rupture')):
            r_sites = sitecol if rupture.site_indices is None \
                else FilteredSiteCollection(rupture.site_indices, sitecol)
            calc.calc_gmfs(
                r_sites, rupture, [(r.id, r.seed) for r in group])

    if getattr(hc, 'hazard_curves_from_gmfs', None):
        with EnginePerformanceMonitor(
                'hazard curves from gmfs',
                job_id, compute_gmfs_and_curves):
            result[trt_model.id] = (calc.to_haz_curves(
                sitecol.sids, hc.intensity_measure_types_and_levels,
                hc.investigation_time, hc.ses_per_logic_tree_path), [])
    else:
        result[trt_model.id] = ([], [])

    if hc.ground_motion_fields:
        with EnginePerformanceMonitor(
                'saving gmfs', job_id, compute_gmfs_and_curves):
            calc.save_gmfs(rlzs_by_gsim)

    return result
Exemple #3
0
def compute_gmfs_and_curves(ses_ruptures, sitecol, rlzs_assoc, monitor):
    """
    :param ses_ruptures:
        a list of blocks of SESRuptures with homogeneous TrtModel
    :param sitecol:
        a :class:`openquake.hazardlib.site.SiteCollection` instance
    :param rlzs_assoc:
        a :class:`openquake.commonlib.source.RlzsAssoc` instance
    :param monitor:
        monitor of the currently running job
    :returns:
        a dictionary trt_model_id -> (curves_by_gsim, bounding_boxes)
        where the list of bounding boxes is empty
    """
    job = models.OqJob.objects.get(pk=monitor.job_id)
    hc = job.get_oqparam()
    imts = hc.imtls

    result = {}  # trt_model_id -> (curves_by_gsim, [])
    # NB: by construction each block is a non-empty list with
    # ruptures of homogeneous SESCollection
    ses_coll = ses_ruptures[0].rupture.ses_collection
    trt_model = ses_coll.trt_model
    gsims = rlzs_assoc.get_gsims_by_trt_id()[trt_model.id]
    calc = GmfCalculator(
        sorted(imts), sorted(gsims), ses_coll,
        hc.truncation_level, models.get_correl_model(job))

    with monitor('computing gmfs', autoflush=True):
        for rupture, group in itertools.groupby(
                ses_ruptures, operator.attrgetter('rupture')):
            r_sites = sitecol if rupture.site_indices is None \
                else FilteredSiteCollection(rupture.site_indices, sitecol)
            calc.calc_gmfs(
                r_sites, rupture, [(r.id, r.seed) for r in group])

    if hc.hazard_curves_from_gmfs:
        duration = hc.investigation_time * hc.ses_per_logic_tree_path * (
            hc.number_of_logic_tree_samples or 1)
        with monitor('hazard curves from gmfs', autoflush=True):
            result[trt_model.id] = (calc.to_haz_curves(
                sitecol.sids, hc.imtls, hc.investigation_time, duration), [])
    else:
        result[trt_model.id] = ([], [])

    if hc.ground_motion_fields:
        with monitor('saving gmfs', autoflush=True):
            calc.save_gmfs(rlzs_assoc)

    return result
Exemple #4
0
def gmfs(job_id, ses_ruptures, sitecol, gmf_id):
    """
    :param int job_id: the current job ID
    :param ses_ruptures: a set of `SESRupture` instances
    :param sitecol: a `SiteCollection` instance
    :param int gmf_id: the ID of a `Gmf` instance
    """
    job = models.OqJob.objects.get(pk=job_id)
    hc = job.hazard_calculation
    # distinct is here to make sure that IMTs such as
    # SA(0.8) and SA(0.80) are considered the same
    imts = distinct(from_string(x) for x in sorted(hc.intensity_measure_types))
    gsim = AVAILABLE_GSIMS[hc.gsim]()  # instantiate the GSIM class
    correlation_model = models.get_correl_model(job)

    cache = collections.defaultdict(list)  # {site_id, imt -> gmvs}
    inserter = writer.CacheInserter(models.GmfData, 1000)
    # insert GmfData in blocks of 1000 sites

    # NB: ses_ruptures a non-empty list produced by the block_splitter
    rupture = ses_ruptures[0].rupture  # ProbabilisticRupture instance
    with EnginePerformanceMonitor('computing gmfs', job_id, gmfs):
        gmf = GmfComputer(rupture, sitecol, imts, [gsim], hc.truncation_level,
                          correlation_model)
        gname = gsim.__class__.__name__
        for ses_rup in ses_ruptures:
            for (gname, imt), gmvs in gmf.compute(ses_rup.seed):
                for site_id, gmv in zip(sitecol.sids, gmvs):
                    # float may be needed below to convert 1x1 matrices
                    cache[site_id, imt].append((gmv, ses_rup.id))

    with EnginePerformanceMonitor('saving gmfs', job_id, gmfs):
        for (site_id, imt_str), data in cache.iteritems():
            imt = from_string(imt_str)
            gmvs, rup_ids = zip(*data)
            inserter.add(
                models.GmfData(
                    gmf_id=gmf_id,
                    task_no=0,
                    imt=imt[0],
                    sa_period=imt[1],
                    sa_damping=imt[2],
                    site_id=site_id,
                    rupture_ids=rup_ids,
                    gmvs=gmvs))
        inserter.flush()
Exemple #5
0
    def create_ruptures(self):
        oqparam = models.oqparam(self.job.id)
        self.imts = map(
            from_string, sorted(oqparam.intensity_measure_types_and_levels))
        self.rupture = get_rupture(oqparam)

        # check filtering
        trunc_level = getattr(oqparam, 'truncation_level', None)
        maximum_distance = oqparam.maximum_distance
        self.sites = filters.filter_sites_by_distance_to_rupture(
            self.rupture, maximum_distance, self.site_collection)
        if self.sites is None:
            raise RuntimeError(
                'All sites where filtered out! '
                'maximum_distance=%s km' % maximum_distance)

        # create ses output
        output = models.Output.objects.create(
            oq_job=self.job,
            display_name='SES Collection',
            output_type='ses')
        self.ses_coll = models.SESCollection.create(output=output)

        # create gmf output
        output = models.Output.objects.create(
            oq_job=self.job,
            display_name="GMF",
            output_type="gmf_scenario")
        self.gmf = models.Gmf.objects.create(output=output)

        with self.monitor('saving ruptures'):
            self.tags = ['scenario-%010d' % i for i in xrange(
                oqparam.number_of_ground_motion_fields)]
            _, self.rupids, self.seeds = create_db_ruptures(
                self.rupture, self.ses_coll, self.tags,
                self.hc.random_seed)

        correlation_model = models.get_correl_model(
            models.OqJob.objects.get(pk=self.job.id))
        gsim = AVAILABLE_GSIMS[oqparam.gsim]()
        self.computer = GmfComputer(
            self.rupture, self.site_collection, self.imts, gsim,
            trunc_level, correlation_model)
Exemple #6
0
    def create_ruptures(self):
        oqparam = models.oqparam(self.job.id)
        self.imts = map(from_string, oqparam.imtls)
        self.rupture = readinput.get_rupture(oqparam)

        # check filtering
        trunc_level = oqparam.truncation_level
        maximum_distance = oqparam.maximum_distance
        self.sites = filters.filter_sites_by_distance_to_rupture(
            self.rupture, maximum_distance, self.site_collection)
        if self.sites is None:
            raise RuntimeError(
                'All sites where filtered out! '
                'maximum_distance=%s km' % maximum_distance)

        # create ses output
        output = models.Output.objects.create(
            oq_job=self.job,
            display_name='SES Collection',
            output_type='ses')
        self.ses_coll = models.SESCollection.create(output=output)

        # create gmf output
        output = models.Output.objects.create(
            oq_job=self.job,
            display_name="GMF",
            output_type="gmf_scenario")
        self.gmf = models.Gmf.objects.create(output=output)

        with self.monitor('saving ruptures', autoflush=True):
            self.tags = ['scenario-%010d' % i for i in xrange(
                oqparam.number_of_ground_motion_fields)]
            _, self.rupids, self.seeds = create_db_ruptures(
                self.rupture, self.ses_coll, self.tags,
                self.oqparam.random_seed)

        correlation_model = models.get_correl_model(
            models.OqJob.objects.get(pk=self.job.id))
        gsim = valid.gsim(oqparam.gsim)
        self.computer = GmfComputer(
            self.rupture, self.sites, oqparam.imtls, [gsim],
            trunc_level, correlation_model)
Exemple #7
0
    def create_ruptures(self):
        oqparam = models.oqparam(self.job.id)
        self.imts = map(from_string, oqparam.imtls)
        self.rupture = readinput.get_rupture(oqparam)

        # check filtering
        trunc_level = oqparam.truncation_level
        maximum_distance = oqparam.maximum_distance
        self.sites = filters.filter_sites_by_distance_to_rupture(
            self.rupture, maximum_distance, self.site_collection)
        if self.sites is None:
            raise RuntimeError('All sites where filtered out! '
                               'maximum_distance=%s km' % maximum_distance)

        # create ses output
        output = models.Output.objects.create(oq_job=self.job,
                                              display_name='SES Collection',
                                              output_type='ses')
        self.ses_coll = models.SESCollection.create(output=output)

        # create gmf output
        output = models.Output.objects.create(oq_job=self.job,
                                              display_name="GMF",
                                              output_type="gmf_scenario")
        self.gmf = models.Gmf.objects.create(output=output)

        with self.monitor('saving ruptures', autoflush=True):
            self.tags = [
                'scenario-%010d' % i
                for i in xrange(oqparam.number_of_ground_motion_fields)
            ]
            _, self.rupids, self.seeds = create_db_ruptures(
                self.rupture, self.ses_coll, self.tags,
                self.oqparam.random_seed)

        correlation_model = models.get_correl_model(
            models.OqJob.objects.get(pk=self.job.id))
        gsim = valid.gsim(oqparam.gsim)
        self.computer = GmfComputer(self.rupture, self.sites, oqparam.imtls,
                                    [gsim], trunc_level, correlation_model)