def get_site_model(oqparam, req_site_params): """ Convert the NRML file into an array of site parameters. :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance :param req_site_params: required site parameters :returns: an array with fields lon, lat, vs30, measured, z1pt0, z2pt5, backarc """ nodes = nrml.read(oqparam.inputs['site_model']).siteModel params = [valid.site_param(node.attrib) for node in nodes] missing = req_site_params - set(params[0]) if missing == set(['backarc']): # use a default of False for param in params: param['backarc'] = False elif missing: raise InvalidFile('%s: missing parameter %s' % (oqparam.inputs['site_model'], ', '.join(missing))) # NB: the sorted in sorted(params[0]) is essential, otherwise there is # an heisenbug in scenario/test_case_4 site_model_dt = numpy.dtype([(p, site.site_param_dt[p]) for p in sorted(params[0])]) tuples = [ tuple(param[name] for name in site_model_dt.names) for param in params ] return numpy.array(tuples, site_model_dt)
def get_site_model(oqparam): """ Convert the NRML file into an array of site parameters. :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance :returns: an array with fields lon, lat, vs30, ... """ req_site_params = get_gsim_lt(oqparam).req_site_params arrays = [] for fname in oqparam.inputs['site_model']: if isinstance(fname, str) and fname.endswith('.csv'): sm = hdf5.read_csv(fname, { None: float, 'vs30measured': numpy.uint8 }).array if 'site_id' in sm.dtype.names: raise InvalidFile('%s: you passed a sites.csv file instead of ' 'a site_model.csv file!' % fname) z = numpy.zeros(len(sm), sorted(sm.dtype.descr)) for name in z.dtype.names: # reorder the fields z[name] = sm[name] arrays.append(z) continue nodes = nrml.read(fname).siteModel params = [valid.site_param(node.attrib) for node in nodes] missing = req_site_params - set(params[0]) if 'vs30measured' in missing: # use a default of False missing -= {'vs30measured'} for param in params: param['vs30measured'] = False if 'backarc' in missing: # use a default of False missing -= {'backarc'} for param in params: param['backarc'] = False if missing: raise InvalidFile( '%s: missing parameter %s' % (oqparam.inputs['site_model'], ', '.join(missing))) # NB: the sorted in sorted(params[0]) is essential, otherwise there is # an heisenbug in scenario/test_case_4 site_model_dt = numpy.dtype([(p, site.site_param_dt[p]) for p in sorted(params[0])]) sm = numpy.array([ tuple(param[name] for name in site_model_dt.names) for param in params ], site_model_dt) dupl = "\n".join('%s %s' % loc for loc, n in countby(sm, 'lon', 'lat').items() if n > 1) if dupl: raise InvalidFile('There are duplicated sites in %s:\n%s' % (fname, dupl)) arrays.append(sm) return numpy.concatenate(arrays)
def get_site_model(oqparam): """ Convert the NRML file into an iterator over 6-tuple of the form (z1pt0, z2pt5, measured, vs30, lon, lat) :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance """ for node in nrml.read(oqparam.inputs['site_model']).siteModel: yield valid.site_param(**node.attrib)
def get_site_model(oqparam): """ Convert the NRML file into an array of site parameters. :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance :returns: an array with fields lon, lat, vs30, ... """ req_site_params = get_gsim_lt(oqparam).req_site_params arrays = [] for fname in oqparam.inputs['site_model']: if isinstance(fname, str) and fname.endswith('.csv'): sm = hdf5.read_csv( fname, {None: float, 'vs30measured': bool}).array if 'site_id' in sm.dtype.names: raise InvalidFile('%s: you passed a sites.csv file instead of ' 'a site_model.csv file!' % fname) z = numpy.zeros(len(sm), sorted(sm.dtype.descr)) for name in z.dtype.names: # reorder the fields z[name] = sm[name] arrays.append(z) continue nodes = nrml.read(fname).siteModel params = [valid.site_param(node.attrib) for node in nodes] missing = req_site_params - set(params[0]) if 'vs30measured' in missing: # use a default of False missing -= {'vs30measured'} for param in params: param['vs30measured'] = False if 'backarc' in missing: # use a default of False missing -= {'backarc'} for param in params: param['backarc'] = False if missing: raise InvalidFile('%s: missing parameter %s' % (oqparam.inputs['site_model'], ', '.join(missing))) # NB: the sorted in sorted(params[0]) is essential, otherwise there is # an heisenbug in scenario/test_case_4 site_model_dt = numpy.dtype([(p, site.site_param_dt[p]) for p in sorted(params[0])]) sm = numpy.array([tuple(param[name] for name in site_model_dt.names) for param in params], site_model_dt) arrays.append(sm) return numpy.concatenate(arrays)
def get_site_model(oqparam): """ Convert the NRML file into an array of site parameters. :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance :returns: an array with fields lon, lat, vs30, measured, z1pt0, z2pt5, backarc """ nodes = nrml.read(oqparam.inputs['site_model']).siteModel params = sorted(valid.site_param(**node.attrib) for node in nodes) array = numpy.zeros(len(params), site_model_dt) for i, param in enumerate(params): rec = array[i] for name in site_model_dt.names: rec[name] = getattr(param, name) return array
def get_site_model(oqparam): """ Convert the NRML file into an array of site parameters. :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance :returns: an array with fields lon, lat, vs30, ... """ req_site_params = get_gsim_lt(oqparam).req_site_params if 'amplification' in oqparam.inputs: req_site_params.add('ampcode') arrays = [] for fname in oqparam.inputs['site_model']: if isinstance(fname, str) and fname.endswith('.csv'): sm = hdf5.read_csv(fname, site.site_param_dt).array sm['lon'] = numpy.round(sm['lon'], 5) sm['lat'] = numpy.round(sm['lat'], 5) dupl = get_duplicates(sm, 'lon', 'lat') if dupl: raise InvalidFile( 'Found duplicate sites %s in %s' % (dupl, fname)) if 'site_id' in sm.dtype.names: raise InvalidFile('%s: you passed a sites.csv file instead of ' 'a site_model.csv file!' % fname) params = sorted(set(sm.dtype.names) | req_site_params) z = numpy.zeros( len(sm), [(p, site.site_param_dt[p]) for p in params]) for name in z.dtype.names: try: z[name] = sm[name] except ValueError: # missing, use the global parameter # exercised in the test classical/case_28 value = getattr(oqparam, site.param[name]) if name == 'vs30measured': # special case value = value == 'measured' z[name] = value arrays.append(z) continue nodes = nrml.read(fname).siteModel params = [valid.site_param(node.attrib) for node in nodes] missing = req_site_params - set(params[0]) if 'vs30measured' in missing: # use a default of False missing -= {'vs30measured'} for param in params: param['vs30measured'] = False if 'backarc' in missing: # use a default of False missing -= {'backarc'} for param in params: param['backarc'] = False if 'ampcode' in missing: # use a default of b'' missing -= {'ampcode'} for param in params: param['ampcode'] = b'' if missing: raise InvalidFile('%s: missing parameter %s' % (oqparam.inputs['site_model'], ', '.join(missing))) # NB: the sorted in sorted(params[0]) is essential, otherwise there is # an heisenbug in scenario/test_case_4 site_model_dt = numpy.dtype([(p, site.site_param_dt[p]) for p in sorted(params[0])]) sm = numpy.array([tuple(param[name] for name in site_model_dt.names) for param in params], site_model_dt) dupl = "\n".join( '%s %s' % loc for loc, n in countby(sm, 'lon', 'lat').items() if n > 1) if dupl: raise InvalidFile('There are duplicated sites in %s:\n%s' % (fname, dupl)) arrays.append(sm) return numpy.concatenate(arrays)