def test_add_correspondences_from_tracks_manager() -> None: n_shots = 3 rec = _create_reconstruction( n_cameras=1, n_shots_cam={"0": n_shots}, n_points=10, ) # create tracks manager tm = pymap.TracksManager() # add observations for 3 tracks # One shot and one landmark are not in the reconstruction for track_id in ["0", "1", "100"]: for shot_id in range(n_shots + 1): obs = pymap.Observation(100, 200, 0.5, 255, 0, 0, 100) tm.add_observation(str(shot_id), track_id, obs) # add a shot that is NOT in the tracks manager rec.create_shot(str(n_shots + 5), next(iter(rec.cameras))) rec.add_correspondences_from_tracks_manager(tm) # make sure to have the observations for [] assert "100" not in rec.points for track_id in ["0", "1"]: pt = rec.points[track_id] observations = pt.get_observations() assert len(observations) == n_shots
def __init__( self, reconstruction: types.Reconstruction, reference: geo.TopocentricConverter, projection_max_depth: float, projection_noise: float, gps_noise: Union[Dict[str, float], float], causal_gps_noise: bool, on_disk_features_filename: Optional[str] = None, generate_projections: bool = True, ): self.reconstruction = reconstruction self.exifs = sg.generate_exifs(reconstruction, reference, gps_noise, causal_gps_noise=causal_gps_noise) if generate_projections: (self.features, self.tracks_manager) = sg.generate_track_data( reconstruction, projection_max_depth, projection_noise, on_disk_features_filename, ) else: self.features = sd.SyntheticFeatures(None) self.tracks_manager = pymap.TracksManager()
def undistort_reconstruction( tracks_manager: Optional[pymap.TracksManager], reconstruction: types.Reconstruction, data: DataSetBase, udata: UndistortedDataSet, ) -> Dict[pymap.Shot, List[pymap.Shot]]: all_images = set(data.images()) image_format = data.config["undistorted_image_format"] urec = types.Reconstruction() urec.points = reconstruction.points urec.reference = reconstruction.reference rig_instance_count = itertools.count() utracks_manager = pymap.TracksManager() logger.debug("Undistorting the reconstruction") undistorted_shots = {} for shot in reconstruction.shots.values(): if shot.id not in all_images: logger.warning( f"Not undistorting {shot.id} as it is missing from the dataset's input images." ) continue if shot.camera.projection_type == "perspective": urec.add_camera(perspective_camera_from_perspective(shot.camera)) subshots = [get_shot_with_different_camera(urec, shot, image_format)] elif shot.camera.projection_type == "brown": urec.add_camera(perspective_camera_from_brown(shot.camera)) subshots = [get_shot_with_different_camera(urec, shot, image_format)] elif shot.camera.projection_type in ["fisheye", "fisheye_opencv"]: urec.add_camera(perspective_camera_from_fisheye(shot.camera)) subshots = [get_shot_with_different_camera(urec, shot, image_format)] elif pygeometry.Camera.is_panorama(shot.camera.projection_type): subshot_width = int(data.config["depthmap_resolution"]) subshots = perspective_views_of_a_panorama( shot, subshot_width, urec, image_format, rig_instance_count ) else: logger.warning( f"Not undistorting {shot.id} with unknown camera type." ) continue for subshot in subshots: if tracks_manager: add_subshot_tracks(tracks_manager, utracks_manager, shot, subshot) undistorted_shots[shot.id] = subshots udata.save_undistorted_reconstruction([urec]) if tracks_manager: udata.save_undistorted_tracks_manager(utracks_manager) udata.save_undistorted_shot_ids( { shot_id: [ushot.id for ushot in ushots] for shot_id, ushots in undistorted_shots.items() } ) return undistorted_shots
def undistort_reconstruction( tracks_manager, reconstruction, data: DataSetBase, udata: UndistortedDataSet ): image_format = data.config["undistorted_image_format"] urec = types.Reconstruction() urec.points = reconstruction.points urec.reference = reconstruction.reference rig_instance_count = itertools.count() utracks_manager = pymap.TracksManager() logger.debug("Undistorting the reconstruction") undistorted_shots = {} for shot in reconstruction.shots.values(): if shot.camera.projection_type == "perspective": camera = perspective_camera_from_perspective(shot.camera) urec.add_camera(camera) subshots = [ get_shot_with_different_camera(urec, shot, camera, image_format) ] elif shot.camera.projection_type == "brown": camera = perspective_camera_from_brown(shot.camera) urec.add_camera(camera) subshots = [ get_shot_with_different_camera(urec, shot, camera, image_format) ] elif shot.camera.projection_type in ["fisheye", "fisheye_opencv"]: camera = perspective_camera_from_fisheye(shot.camera) urec.add_camera(camera) subshots = [ get_shot_with_different_camera(urec, shot, camera, image_format) ] elif pygeometry.Camera.is_panorama(shot.camera.projection_type): subshot_width = int(data.config["depthmap_resolution"]) subshots = perspective_views_of_a_panorama( shot, subshot_width, urec, image_format, rig_instance_count ) for subshot in subshots: if tracks_manager: add_subshot_tracks(tracks_manager, utracks_manager, shot, subshot) # pyre-fixme[61]: `subshots` may not be initialized here. undistorted_shots[shot.id] = subshots udata.save_undistorted_reconstruction([urec]) if tracks_manager: udata.save_undistorted_tracks_manager(utracks_manager) udata.save_undistorted_shot_ids( { shot_id: [ushot.id for ushot in ushots] for shot_id, ushots in undistorted_shots.items() } ) return undistorted_shots
def import_images_reconstruction(path_images, keypoints, rec): """ Read images.bin, building shots and tracks graph """ logger.info("Importing images from {}".format(path_images)) tracks_manager = pymap.TracksManager() image_ix_to_shot_id = {} with open(path_images, "rb") as f: n_ims = unpack("<Q", f.read(8))[0] for image_ix in range(n_ims): image_id = unpack("<I", f.read(4))[0] q0 = unpack("<d", f.read(8))[0] q1 = unpack("<d", f.read(8))[0] q2 = unpack("<d", f.read(8))[0] q3 = unpack("<d", f.read(8))[0] t0 = unpack("<d", f.read(8))[0] t1 = unpack("<d", f.read(8))[0] t2 = unpack("<d", f.read(8))[0] camera_id = unpack("<I", f.read(4))[0] filename = "" while True: c = f.read(1).decode() if c == "\0": break filename += c q = np.array([q0, q1, q2, q3]) q /= np.linalg.norm(q) t = np.array([t0, t1, t2]) pose = pygeometry.Pose(rotation=quaternion_to_angle_axis(q), translation=t) shot = rec.create_shot(filename, str(camera_id), pose) image_ix_to_shot_id[image_ix] = shot.id n_points_2d = unpack("<Q", f.read(8))[0] for point2d_ix in range(n_points_2d): x = unpack("<d", f.read(8))[0] y = unpack("<d", f.read(8))[0] point3d_id = unpack("<Q", f.read(8))[0] if point3d_id != np.iinfo(np.uint64).max: kp = keypoints[image_id][point2d_ix] r, g, b = rec.points[str(point3d_id)].color obs = pymap.Observation( x, y, kp[2], int(r), int(g), int(b), point2d_ix, ) tracks_manager.add_observation(shot.id, str(point3d_id), obs) return tracks_manager, image_ix_to_shot_id
def create_tracks_manager( features: t.Dict[str, np.ndarray], colors: t.Dict[str, np.ndarray], segmentations: t.Dict[str, np.ndarray], instances: t.Dict[str, np.ndarray], matches: t.Dict[t.Tuple[str, str], t.List[t.Tuple[int, int]]], min_length: int, ): """Link matches into tracks.""" logger.debug("Merging features onto tracks") uf = UnionFind() for im1, im2 in matches: for f1, f2 in matches[im1, im2]: uf.union((im1, f1), (im2, f2)) sets = {} for i in uf: p = uf[i] if p in sets: sets[p].append(i) else: sets[p] = [i] tracks = [t for t in sets.values() if _good_track(t, min_length)] logger.debug("Good tracks: {}".format(len(tracks))) NO_VALUE = pymap.Observation.NO_SEMANTIC_VALUE tracks_manager = pymap.TracksManager() for track_id, track in enumerate(tracks): for image, featureid in track: if image not in features: continue x, y, s = features[image][featureid] r, g, b = colors[image][featureid] segmentation, instance = ( segmentations[image][featureid] if image in segmentations else NO_VALUE, instances[image][featureid] if image in instances else NO_VALUE, ) obs = pymap.Observation( x, y, s, int(r), int(g), int(b), featureid, segmentation, instance ) tracks_manager.add_observation(image, str(track_id), obs) return tracks_manager
def test_track_triangulator_spherical() -> None: """Test triangulating tracks of spherical images.""" tracks_manager = pymap.TracksManager() tracks_manager.add_observation("im1", "1", pymap.Observation(0, 0, 1.0, 0, 0, 0, 0)) tracks_manager.add_observation("im2", "1", pymap.Observation(-0.1, 0, 1.0, 0, 0, 0, 1)) rec = io.reconstruction_from_json({ "cameras": { "theta": { "projection_type": "spherical", "width": 800, "height": 400, } }, "shots": { "im1": { "camera": "theta", "rotation": [0.0, 0.0, 0.0], "translation": [0.0, 0.0, 0.0], }, "im2": { "camera": "theta", "rotation": [0, 0, 0.0], "translation": [-1, 0, 0.0], }, }, "points": {}, }) triangulator = reconstruction.TrackTriangulator( rec, reconstruction.TrackHandlerTrackManager(tracks_manager, rec)) triangulator.triangulate("1", 0.01, 2.0, 10) assert "1" in rec.points p = rec.points["1"].coordinates assert np.allclose(p, [0, 0, 1.3763819204711]) assert len(rec.points["1"].get_observations()) == 2
def compute_and_save_undistorted_reconstruction( reconstruction, tracks_manager, data, udata ): image_format = data.config["undistorted_image_format"] urec = types.Reconstruction() utracks_manager = pymap.TracksManager() undistorted_shots = [] for shot in reconstruction.shots.values(): if shot.camera.projection_type == "perspective": ucamera = osfm_u.perspective_camera_from_perspective(shot.camera) elif shot.camera.projection_type == "brown": ucamera = osfm_u.perspective_camera_from_brown(shot.camera) elif shot.camera.projection_type == "fisheye": ucamera = osfm_u.perspective_camera_from_fisheye(shot.camera) else: raise ValueError urec.add_camera(ucamera) ushot = osfm_u.get_shot_with_different_camera(urec, shot, image_format) if tracks_manager: osfm_u.add_subshot_tracks(tracks_manager, utracks_manager, shot, ushot) undistorted_shots.append(ushot) image = data.load_image(shot.id, unchanged=True, anydepth=True) if image is not None: max_size = data.config["undistorted_image_max_size"] undistorted = osfm_u.undistort_image( shot, undistorted_shots, image, cv2.INTER_AREA, max_size ) for k, v in undistorted.items(): udata.save_undistorted_image(k, v) udata.save_undistorted_reconstruction([urec]) if tracks_manager: udata.save_undistorted_tracks_manager(utracks_manager) return urec
def generate_track_data( reconstruction: types.Reconstruction, maximum_depth: float, projection_noise: float, gcp_noise: Tuple[float, float], gcps_count: Optional[int], gcp_shift: Optional[np.ndarray], on_disk_features_filename: Optional[str], ) -> Tuple[ sd.SyntheticFeatures, pymap.TracksManager, Dict[str, pymap.GroundControlPoint] ]: """Generate projection data from a reconstruction, considering a maximum viewing depth and gaussian noise added to the ideal projections. Returns feature/descriptor/color data per shot and a tracks manager object. """ tracks_manager = pymap.TracksManager() feature_data_type = np.float32 desc_size = 128 non_zeroes = 5 points_ids = list(reconstruction.points) points_coordinates = [p.coordinates for p in reconstruction.points.values()] points_colors = [p.color for p in reconstruction.points.values()] # generate random descriptors per point track_descriptors = [] for _ in points_coordinates: descriptor = np.zeros(desc_size) for _ in range(non_zeroes): index = np.random.randint(0, desc_size) descriptor[index] = np.random.random() * 255 track_descriptors.append(descriptor.round().astype(feature_data_type)) # should speed-up projection queries points_tree = spatial.cKDTree(points_coordinates) start = time.time() features = sd.SyntheticFeatures(on_disk_features_filename) default_scale = 0.004 for index, (shot_index, shot) in enumerate(reconstruction.shots.items()): # query all closest points neighbors = list( sorted(points_tree.query_ball_point(shot.pose.get_origin(), maximum_depth)) ) # project them projections = shot.project_many( np.array([points_coordinates[c] for c in neighbors]) ) # shot constants center = shot.pose.get_origin() z_axis = shot.pose.get_rotation_matrix()[2] is_panorama = pygeometry.Camera.is_panorama(shot.camera.projection_type) perturbation = float(projection_noise) / float( max(shot.camera.width, shot.camera.height) ) sigmas = np.array([perturbation, perturbation]) # pre-generate random perturbations perturbations = np.random.normal(0.0, sigmas, (len(projections), 2)) # run and check valid projections projections_inside = [] descriptors_inside = [] colors_inside = [] for i, (p_id, projection) in enumerate(zip(neighbors, projections)): if not _is_inside_camera(projection, shot.camera): continue point = points_coordinates[p_id] if not is_panorama and not _is_in_front(point, center, z_axis): continue # add perturbation projection += perturbations[i] # push data color = points_colors[p_id] original_id = points_ids[p_id] projections_inside.append([projection[0], projection[1], default_scale]) descriptors_inside.append(track_descriptors[p_id]) colors_inside.append(color) obs = pymap.Observation( projection[0], projection[1], default_scale, color[0], color[1], color[2], len(projections_inside) - 1, ) tracks_manager.add_observation(str(shot_index), str(original_id), obs) features[shot_index] = oft.FeaturesData( np.array(projections_inside), np.array(descriptors_inside), np.array(colors_inside), None, ) if index % 100 == 0: logger.info( f"Flushing images # {index} ({(time.time() - start)/(index+1)} sec. per image" ) features.sync() gcps = {} if gcps_count is not None and gcp_shift is not None: all_track_ids = list(tracks_manager.get_track_ids()) gcps_ids = [ all_track_ids[i] for i in np.random.randint(len(all_track_ids) - 1, size=gcps_count) ] sigmas_gcp = np.random.normal( 0.0, np.array([gcp_noise[0], gcp_noise[0], gcp_noise[1]]), (len(gcps_ids), 3), ) for i, gcp_id in enumerate(gcps_ids): point = reconstruction.points[gcp_id] gcp = pymap.GroundControlPoint() gcp.id = f"gcp-{gcp_id}" enu = point.coordinates + gcp_shift + sigmas_gcp[i] lat, lon, alt = reconstruction.reference.to_lla(*enu) gcp.lla = {"latitude": lat, "longitude": lon, "altitude": alt} gcp.has_altitude = True for shot_id, obs in tracks_manager.get_track_observations(gcp_id).items(): o = pymap.GroundControlPointObservation() o.shot_id = shot_id o.projection = obs.point gcp.add_observation(o) gcps[gcp.id] = gcp return features, tracks_manager, gcps