Exemple #1
0
def get_protocol_api(
        version: Union[str, APIVersion],
        bundled_labware: Dict[str, Dict[str, Any]] = None,
        bundled_data: Dict[str, bytes] = None,
        extra_labware: Dict[str, Dict[str, Any]] = None)\
        -> protocol_api.ProtocolContext:
    """
    Build and return a :py:class:`ProtocolContext`connected to
    Virtual Smoothie.

    This can be used to run protocols from interactive Python sessions
    such as Jupyter or an interpreter on the command line:

    .. code-block:: python

        >>> from opentrons.simulate import get_protocol_api
        >>> protocol = get_protocol_api('2.0')
        >>> instr = protocol.load_instrument('p300_single', 'right')
        >>> instr.home()

    If ``extra_labware`` is not specified, any labware definitions saved in
    the ``labware`` directory of the Jupyter notebook directory will be
    available.

    :param version: The API version to use. This must be lower than
                    :py:attr:`opentrons.protocol_api.MAX_SUPPORTED_VERSION`.
                    It may be specified either as a string (``'2.0'``) or
                    as a :py:class:`.protocols.types.APIVersion`
                    (``APIVersion(2, 0)``).
    :param bundled_labware: If specified, a mapping from labware names to
                            labware definitions for labware to consider in the
                            protocol. Note that if you specify this, _only_
                            labware in this argument will be allowed in the
                            protocol. This is preparation for a beta feature
                            and is best not used.
    :param bundled_data: If specified, a mapping from filenames to contents
                         for data to be available in the protocol from
                         :py:attr:`.ProtocolContext.bundled_data`.
    :param extra_labware: If specified, a mapping from labware names to
                          labware definitions for labware to consider in the
                          protocol in addition to those stored on the robot.
                          If this is an empty dict, and this function is called
                          on a robot, it will look in the 'labware'
                          subdirectory of the Jupyter data directory for
                          custom labware.
    :returns opentrons.protocol_api.ProtocolContext: The protocol context.
    """
    if isinstance(version, str):
        checked_version = parse.version_from_string(version)
    elif not isinstance(version, APIVersion):
        raise TypeError('version must be either a string or an APIVersion')
    else:
        checked_version = version
    if extra_labware is None\
       and IS_ROBOT\
       and JUPYTER_NOTEBOOK_LABWARE_DIR.is_dir():  # type: ignore
        extra_labware = labware_from_paths(
            [str(JUPYTER_NOTEBOOK_LABWARE_DIR)])
    return _build_protocol_context(
        checked_version, bundled_labware, bundled_data, extra_labware)
Exemple #2
0
def get_protocol_api(
    version: Union[str, APIVersion],
    bundled_labware: Dict[str, 'LabwareDefinition'] = None,
    bundled_data: Dict[str, bytes] = None,
    extra_labware: Dict[str, 'LabwareDefinition'] = None,
) -> protocol_api.ProtocolContext:
    """
    Build and return a :py:class:`ProtocolContext` connected to the robot.

    This can be used to run protocols from interactive Python sessions
    such as Jupyter or an interpreter on the command line:

    .. code-block:: python

        >>> from opentrons.execute import get_protocol_api
        >>> protocol = get_protocol_api('2.0')
        >>> instr = protocol.load_instrument('p300_single', 'right')
        >>> instr.home()

    If ``extra_labware`` is not specified, any labware definitions saved in
    the ``labware`` directory of the Jupyter notebook directory will be
    available.

    When this function is called, modules and instruments will be recached.

    :param version: The API version to use. This must be lower than
                    :py:attr:`opentrons.protocol_api.MAX_SUPPORTED_VERSION`.
                    It may be specified either as a string (``'2.0'``) or
                    as a :py:class:`.protocols.types.APIVersion`
                    (``APIVersion(2, 0)``).
    :param bundled_labware: If specified, a mapping from labware names to
                            labware definitions for labware to consider in the
                            protocol. Note that if you specify this, _only_
                            labware in this argument will be allowed in the
                            protocol. This is preparation for a beta feature
                            and is best not used.
    :param bundled_data: If specified, a mapping from filenames to contents
                         for data to be available in the protocol from
                         :py:attr:`.ProtocolContext.bundled_data`.
    :param extra_labware: If specified, a mapping from labware names to
                          labware definitions for labware to consider in the
                          protocol in addition to those stored on the robot.
                          If this is an empty dict, and this function is called
                          on a robot, it will look in the 'labware'
                          subdirectory of the Jupyter data directory for
                          custom labware.
    :returns opentrons.protocol_api.ProtocolContext: The protocol context.
    """
    global _THREAD_MANAGED_HW
    if not _THREAD_MANAGED_HW:
        # Build a hardware controller in a worker thread, which is necessary
        # because ipython runs its notebook in asyncio but the notebook
        # is at script/repl scope not function scope and is synchronous so
        # you can't control the loop from inside. If we update to
        # IPython 7 we can avoid this, but for now we can't
        _THREAD_MANAGED_HW = ThreadManager(API.build_hardware_controller)
    if isinstance(version, str):
        checked_version = version_from_string(version)
    elif not isinstance(version, APIVersion):
        raise TypeError('version must be either a string or an APIVersion')
    else:
        checked_version = version

    if extra_labware is None\
       and IS_ROBOT\
       and JUPYTER_NOTEBOOK_LABWARE_DIR.is_dir():  # type: ignore
        extra_labware = labware_from_paths([str(JUPYTER_NOTEBOOK_LABWARE_DIR)])

    context = protocol_api.ProtocolContext(hardware=_THREAD_MANAGED_HW,
                                           bundled_labware=bundled_labware,
                                           bundled_data=bundled_data,
                                           extra_labware=extra_labware,
                                           api_version=checked_version)
    context._hw_manager.hardware.cache_instruments()
    return context