Exemple #1
0
 def _exec(self, Lambda):
     Y_lambda = ot.BoxCoxTransform(Lambda)(self.Y_i_)
     algo = ot.LinearLeastSquares(self.a_i_, Y_lambda)
     algo.run()
     beta0 = algo.getConstant()[0]
     beta1 = algo.getLinear()[0, 0]
     sigma2 = (self.N_ - 1.0) / (self.N_ - 2.0) * (Y_lambda - (self.a_i_ * [beta1] + [beta0])).computeVariance()[0]
     return [-0.5 * self.N_ * m.log(sigma2) + (Lambda[0] - 1) * self.sumLogY_i]
Exemple #2
0
    def build(self, dataX, dataY):
        logLikelihood = ot.NumericalMathFunction(ReducedLogLikelihood(dataX, dataY))
        xlb = np.linspace(self.lambdaMin_,self.lambdaMax_,num=500)
        lambdax = [logLikelihood([x])[0] for x in xlb]
        algo = ot.TNC(logLikelihood)
        algo.setStartingPoint([xlb[np.array(lambdax).argmax()]])
        algo.setBoundConstraints(ot.Interval(self.lambdaMin_, self.lambdaMax_))
        algo.setOptimizationProblem(ot.BoundConstrainedAlgorithmImplementationResult.MAXIMIZATION)
        algo.run()
        optimalLambda = algo.getResult().getOptimizer()[0]

        # graph
        optimalLogLikelihood = algo.getResult().getOptimalValue()
        graph = logLikelihood.draw(0.01 * optimalLambda, 10.0 * optimalLambda)
        c = ot.Cloud([[optimalLambda, optimalLogLikelihood]])
        c.setColor("red")
        c.setPointStyle("circle")
        graph.add(c)
        return ot.BoxCoxTransform([optimalLambda]), graph
Exemple #3
0
    def _run(self, inputSample, outputSample, detection, noiseThres,
             saturationThres, boxCox, censored):
        """
        Run common preliminary analysis to all methods to build POD. 
        """
        #################### Filter censored data ##############################
        if censored:
            # Filter censored data
            inputSample, inputSampleNoise, inputSampleSat, signals = \
                DataHandling.filterCensoredData(inputSample, outputSample,
                              noiseThres, saturationThres)
        else:
            inputSample, signals = inputSample, outputSample
            inputSampleNoise, inputSampleSat = None, None

        ###################### Box Cox transformation ##########################
        # Compute Box Cox if enabled
        if boxCox:
            # optimization required, get optimal lambda without graph
            self._lambdaBoxCox, self._graphBoxCox = computeBoxCox(
                inputSample, signals)

            # Transformation of data
            boxCoxTransform = ot.BoxCoxTransform([self._lambdaBoxCox])
            signals = boxCoxTransform(signals)
            if censored:
                if noiseThres is not None:
                    noiseThres = boxCoxTransform([noiseThres])[0]
                if saturationThres is not None:
                    saturationThres = boxCoxTransform([saturationThres])[0]
            detectionBoxCox = boxCoxTransform([detection])[0]
        else:
            detectionBoxCox = detection
            self._lambdaBoxCox = None
            boxCoxTransform = None

        return {
            'inputSample': inputSample,
            'signals': signals,
            'detectionBoxCox': detectionBoxCox,
            'boxCoxTransform': boxCoxTransform
        }
Exemple #4
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create a Box Cox transformation
myLambda = ot.NumericalPoint([0.0, 0.1, 1.0, 1.5])

graph = ot.Graph()
for i in range(myLambda.getDimension()):
    myBoxCox = ot.BoxCoxTransform(myLambda[i])
    graph.add(myBoxCox.draw(0.1, 2.1))

graph.setColors(['red', 'blue', 'black', 'green'])
graph.setLegends(['lambda = ' + str(lam) for lam in myLambda])

graph.setLegendPosition("bottomright")

fig = plt.figure(figsize=(8, 4))
plt.suptitle("Box Cox transformations")
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=True)
Exemple #5
0
    def _run(self):
        """
        Run the analysis :
        - Computes the Box Cox parameter if *boxCox* is True,
        - Computes the transformed signals if *boxCox* is True or a float,
        - Builds the univariate linear regression model on the data,
        - Computes the linear regression parameters for censored data if needed,
        - Computes the residuals,
        - Runs all hypothesis tests.
        """

        #################### Filter censored data ##############################
        if self._censored:
            # Filter censored data
            # Returns:
            # defects in the non censored area
            # defectsNoise in the noisy area
            # defectsSat in the saturation area
            # signals in the non censored area
            # check if one the threshold is None
            defects, defectsNoise, defectsSat, signals = \
                DataHandling.filterCensoredData(self._inputSample, self._outputSample,
                              self._noiseThres, self._saturationThres)
        else:
            defects, signals = self._inputSample, self._outputSample

        defectsSize = defects.getSize()

        ###################### Box Cox transformation ##########################
        # Compute Box Cox if enabled
        if self._boxCox:
            if self._lambdaBoxCox is None:
                # optimization required, get optimal lambda and graph
                self._lambdaBoxCox, self._graphBoxCox = computeBoxCox(
                    defects, signals)

            # Transformation of data
            boxCoxTransform = ot.BoxCoxTransform([self._lambdaBoxCox])
            signals = boxCoxTransform(signals)
            if self._noiseThres is not None:
                noiseThres = boxCoxTransform([self._noiseThres])[0]
            else:
                noiseThres = self._noiseThres
            if self._saturationThres is not None:
                saturationThres = boxCoxTransform([self._saturationThres])[0]
            else:
                saturationThres = self._saturationThres
        else:
            noiseThres = self._noiseThres
            saturationThres = self._saturationThres

        ######################### Linear Regression model ######################
        # Linear regression with statsmodels module
        # Create the X matrix : [1, inputSample]
        X = ot.NumericalSample(defectsSize, [1, 0])
        X[:, 1] = defects
        self._algoLinear = OLS(np.array(signals), np.array(X)).fit()

        self._resultsUnc.intercept = self._algoLinear.params[0]
        self._resultsUnc.slope = self._algoLinear.params[1]
        # get standard error estimates (residuals standard deviation)
        self._resultsUnc.stderr = np.sqrt(self._algoLinear.scale)
        # get confidence interval at level 95%
        self._resultsUnc.confInt = self._algoLinear.conf_int(0.05)

        if self._censored:
            # define initial starting point for MLE optimization
            initialStartMLE = [
                self._resultsUnc.intercept, self._resultsUnc.slope,
                self._resultsUnc.stderr
            ]
            # MLE optimization
            res = computeLinearParametersCensored(initialStartMLE, defects,
                                                  defectsNoise, defectsSat,
                                                  signals, noiseThres,
                                                  saturationThres)
            self._resultsCens.intercept = res[0]
            self._resultsCens.slope = res[1]
            self._resultsCens.stderr = res[2]

        ############################ Residuals #################################
        # get residuals from algoLinear
        self._resultsUnc.residuals = ot.NumericalSample(
            np.vstack(self._algoLinear.resid))
        # compute residuals distribution
        self._resultsUnc.resDist = self._resDistFact.build(
            self._resultsUnc.residuals)

        if self._censored:
            # create linear model function for censored case
            def CensLinModel(x):
                return self._resultsCens.intercept + self._resultsCens.slope * x

            # compute the residuals for the censored case.
            self._resultsCens.fittedSignals = CensLinModel(defects)
            self._resultsCens.residuals = signals - self._resultsCens.fittedSignals
            # compute residuals distribution.
            self._resultsCens.resDist = self._resDistFact.build(
                self._resultsCens.residuals)

        ########################## Compute tests ###############################
        self._resultsUnc.testResults = \
                self._computeTests(defects, signals, self._resultsUnc.residuals,
                                   self._resultsUnc.resDist)

        if self._censored:
            self._resultsCens.testResults = \
                self._computeTests(defects, signals, self._resultsCens.residuals,
                                   self._resultsCens.resDist)

        ################ Build the result lists to be printed ##################
        self._buildPrintResults()
def _computeLinearModel(inputSample, outputSample, detection, noiseThres,
                        saturationThres, boxCox, censored):
    """
    Run filerCensoredData and build the linear regression model.
    It is defined as a simple function because it is also needed in a loop for
    the bootstrap based POD.
    """

    #################### Filter censored data ##############################
    if censored:
        # Filter censored data
        defects, defectsNoise, defectsSat, signals = \
            DataHandling.filterCensoredData(inputSample, outputSample,
                          noiseThres, saturationThres)
    else:
        defects, signals = inputSample, outputSample

    defectsSize = defects.getSize()

    ###################### Box Cox transformation ##########################
    # Compute Box Cox if enabled
    if boxCox:
        if signals.getMin()[0] < 0:
            shift = -signals.getMin()[0] + 100
        else:
            shift = 0.

        # optimization required, get optimal lambda without graph
        lambdaBoxCox, graphBoxCox = computeBoxCox(defects, signals, shift)

        # Transformation of data
        boxCoxTransform = ot.BoxCoxTransform([lambdaBoxCox])
        signals = boxCoxTransform(signals + shift)
        if censored:
            if noiseThres is not None:
                noiseThres = boxCoxTransform([noiseThres + shift])[0]
            if saturationThres is not None:
                saturationThres = boxCoxTransform([saturationThres + shift])[0]
        detectionBoxCox = boxCoxTransform([detection + shift])[0]
    else:
        detectionBoxCox = detection
        lambdaBoxCox = None
        graphBoxCox = None

    ######################### Linear Regression model ######################
    # Linear regression with statsmodels module
    # Create the X matrix : [1, inputSample]
    X = ot.Sample(defectsSize, [1, 0])
    X[:, 1] = defects
    algoLinear = OLS(np.array(signals), np.array(X)).fit()

    intercept = algoLinear.params[0]
    slope = algoLinear.params[1]
    # get standard error estimates (residuals standard deviation)
    stderr = np.sqrt(algoLinear.scale)
    # get residuals from algoLinear
    residuals = ot.Sample(np.vstack(algoLinear.resid))

    if censored:
        # define initial starting point for MLE optimization
        initialStartMLE = [intercept, slope, stderr]
        # MLE optimization
        res = computeLinearParametersCensored(initialStartMLE, defects,
                                              defectsNoise, defectsSat,
                                              signals, noiseThres,
                                              saturationThres)
        intercept = res[0]
        slope = res[1]
        stderr = res[2]
        residuals = signals - (intercept + slope * defects)

    return {
        'defects': defects,
        'signals': signals,
        'intercept': intercept,
        'slope': slope,
        'stderr': stderr,
        'residuals': residuals,
        'detection': detectionBoxCox,
        'lambdaBoxCox': lambdaBoxCox,
        'graphBoxCox': graphBoxCox
    }
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create a Box Cox transformation
lambdas = [0.0, 0.1, 1.0, 1.5]

graph = ot.Graph("Box Cox transformations", 'x', 'y', True)
for i in range(len(lambdas)):
    boxCoxT = ot.BoxCoxTransform(lambdas[i])
    graph.add(boxCoxT.draw(0.1, 2.1))

graph.setColors(['red', 'blue', 'black', 'green'])
graph.setLegends(['lambda = ' + str(lam) for lam in lambdas])
graph.setLegendPosition("bottomright")

fig = plt.figure(figsize=(8, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=True)