import openturns as ot from matplotlib import pyplot as plt from openturns.viewer import View # Generate sample with the given plane center = [0.5, 1.5] levels = [4, 8, 16] myPlane = ot.Composite(center, levels) sample = myPlane.generate() # Create the graph graph = ot.Graph("", "x1", "x2", True, "") cloud = ot.Cloud(sample, "blue", "fsquare", "") graph.add(cloud) # Draw the graph fig = plt.figure(figsize=(4, 4)) plt.suptitle(sample.getName()) axis = fig.add_subplot(111) View(graph, figure=fig, axes=[axis], add_legend=False, square_axes=True) axis.set_xlim(auto=True)
======================================== """ # %% # %% # In this example we create a deterministic design experiment with the `Composite` class. # %% import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) # %% # Define position, scale center = [0.5, 1.5] levels = [4, 8, 16] # %% # Create the design experiment = ot.Composite(center, levels) sample = experiment.generate() # %% # Plot the design graph = ot.Graph("Composite design", "x1", "x2", True, "") cloud = ot.Cloud(sample, "blue", "fsquare", "") graph.add(cloud) view = viewer.View(graph) plt.show()
# # %% experiment = ot.Factorial(2, levels) sample = experiment.generate() sample *= 2.0 sample += [5.0, 8.0] graph = drawBidimensionalSample(sample, "Factorial") view = viewer.View(graph) # %% # Composite design # ---------------- # %% experiment = ot.Composite(2, levels) sample = experiment.generate() sample *= 2.0 sample += [5.0, 8.0] graph = drawBidimensionalSample(sample, "Composite") view = viewer.View(graph) # %% # Grid design # ----------- # # %% levels = [3, 4] experiment = ot.Box(levels) sample = experiment.generate()
result.getOptimalPoint(), [0.0] * dim, 1e-7, 1e-5) openturns.testing.assert_almost_equal( result.getOptimalValue(), [0.0], 1e-15, 2.4e-5) # ei = algo.getExpectedImprovement() # print(ei) # Cobyla out of bound test ot.RandomGenerator.SetSeed(0) dim = 4 model = ot.SymbolicFunction(['x1', 'x2', 'x3', 'x4'], ['x1*x1+x2^3*x1+x3+x4']) model = ot.MemoizeFunction(model) bounds = ot.Interval([-5.0] * dim, [5.0] * dim) problem = ot.OptimizationProblem() problem.setObjective(model) problem.setBounds(bounds) experiment = ot.Composite([0.0] * dim, [1.0, 2.0, 4.0]) inputSample = experiment.generate() outputSample = model(inputSample) covarianceModel = ot.SquaredExponential([2.0] * dim, [0.1]) basis = ot.ConstantBasisFactory(dim).build() kriging = ot.KrigingAlgorithm( inputSample, outputSample, covarianceModel, basis) kriging.run() algo = ot.EfficientGlobalOptimization(problem, kriging.getResult()) algo.setMaximumEvaluationNumber(2) algo.run() result = algo.getResult() print('OK')
import openturns as ot from openturns.viewer import View # Composite d = ot.Composite([1.5, 2.5, 3.5], [1, 2, 3]) s = d.generate() s.setDescription(["X1", "X2", "X3"]) g = ot.Graph() g.setTitle("Composite experiment") g.setGridColor("black") p = ot.Pairs(s) g.add(p) View(g)