Exemple #1
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.FrankCopula().__class__.__name__ == 'EmpiricalBernsteinCopula':
    sample = ot.Dirichlet([1.0, 2.0, 3.0]).getSample(100)
    copula = ot.EmpiricalBernsteinCopula(sample, 4)
elif ot.FrankCopula().__class__.__name__ == 'ExtremeValueCopula':
    copula = ot.ExtremeValueCopula(ot.SymbolicFunction("t", "t^3/2-t/2+1"))
elif ot.FrankCopula(
).__class__.__name__ == 'MaximumEntropyOrderStatisticsCopula':
    marginals = [ot.Beta(1.5, 3.2, 0.0, 1.0), ot.Beta(2.0, 4.3, 0.5, 1.2)]
    copula = ot.MaximumEntropyOrderStatisticsCopula(marginals)
elif ot.FrankCopula().__class__.__name__ == 'NormalCopula':
    R = ot.CorrelationMatrix(2)
    R[1, 0] = 0.8
    copula = ot.NormalCopula(R)
elif ot.FrankCopula().__class__.__name__ == 'SklarCopula':
    student = ot.Student(3.0, [1.0] * 2, [3.0] * 2, ot.CorrelationMatrix(2))
    copula = ot.SklarCopula(student)
else:
    copula = ot.FrankCopula()
if copula.getDimension() == 1:
    copula = ot.FrankCopula(2)
copula.setDescription(['$u_1$', '$u_2$'])
pdf_graph = copula.drawPDF()
cdf_graph = copula.drawCDF()
fig = plt.figure(figsize=(10, 4))
pdf_axis = fig.add_subplot(121)
cdf_axis = fig.add_subplot(122)
View(pdf_graph,
     figure=fig,
Exemple #2
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.ExtremeValueCopula().__class__.__name__ == 'EmpiricalBernsteinCopula':
    sample = ot.Dirichlet([1.0, 2.0, 3.0]).getSample(100)
    copula = ot.EmpiricalBernsteinCopula(sample, 4)
elif ot.ExtremeValueCopula().__class__.__name__ == 'ExtremeValueCopula':
    copula = ot.ExtremeValueCopula(ot.SymbolicFunction("t", "t^3/2-t/2+1"))
elif ot.ExtremeValueCopula(
).__class__.__name__ == 'MaximumEntropyOrderStatisticsCopula':
    marginals = [ot.Beta(1.5, 3.2, 0.0, 1.0), ot.Beta(2.0, 4.3, 0.5, 1.2)]
    copula = ot.MaximumEntropyOrderStatisticsCopula(marginals)
elif ot.ExtremeValueCopula().__class__.__name__ == 'NormalCopula':
    R = ot.CorrelationMatrix(2)
    R[1, 0] = 0.8
    copula = ot.NormalCopula(R)
elif ot.ExtremeValueCopula().__class__.__name__ == 'SklarCopula':
    student = ot.Student(3.0, [1.0] * 2, [3.0] * 2, ot.CorrelationMatrix(2))
    copula = ot.SklarCopula(student)
else:
    copula = ot.ExtremeValueCopula()
if copula.getDimension() == 1:
    copula = ot.ExtremeValueCopula(2)
copula.setDescription(['$u_1$', '$u_2$'])
pdf_graph = copula.drawPDF()
cdf_graph = copula.drawCDF()
fig = plt.figure(figsize=(10, 4))
pdf_axis = fig.add_subplot(121)
cdf_axis = fig.add_subplot(122)
View(pdf_graph,
     figure=fig,