def meshHeart(ntheta, nr):
    # First, build the nodes
    nodes = ot.Sample(0, 2)
    nodes.add([0.0, 0.0])
    for j in range(ntheta):
        theta = (m.pi * j) / ntheta
        if (abs(theta - 0.5 * m.pi) < 1e-10):
            rho = 2.0
        elif (abs(theta) < 1e-10) or (abs(theta - m.pi) < 1e-10):
            rho = 0.0
        else:
            absTanTheta = abs(m.tan(theta))
            rho = absTanTheta**(1.0 / absTanTheta) + m.sin(theta)
        cosTheta = m.cos(theta)
        sinTheta = m.sin(theta)
        for k in range(nr):
            tau = (k + 1.0) / nr
            r = rho * tau
            nodes.add([r * cosTheta, r * sinTheta - tau])
    # Second, build the triangles
    triangles = []
    ## First heart
    for j in range(ntheta):
        triangles.append([0, 1 + j * nr, 1 + ((j + 1) % ntheta) * nr])
    # Other hearts
    for j in range(ntheta):
        for k in range(nr - 1):
            i0 = k + 1 + j * nr
            i1 = k + 2 + j * nr
            i2 = k + 2 + ((j + 1) % ntheta) * nr
            i3 = k + 1 + ((j + 1) % ntheta) * nr
            triangles.append([i0, i1, i2 % (nr * ntheta)])
            triangles.append([i0, i2, i3 % (nr * ntheta)])
    return ot.Mesh(nodes, triangles)
Exemple #2
0
    def liftAsProcessSample(self, coefficients):
        '''Function to lift a sample of coefficients into a collections of
        process samples and points.

        Parameters
        ----------
        coefficients : ot.Sample
            sample of values, follwing a centered normal law in general

        Returns
        -------
        processes : list
            ordered list of samples of scalars (ot.Sample) and field samples (ot.ProcessSample)
        '''
        assert isinstance(coefficients, (ot.Sample, ot.SampleImplementation))
        print('Lifting as process sample')
        jumpDim = 0
        processes = []
        for i in range(self.__field_distribution_count__):
            if self.__isProcess__[i] :
                if not self.__liftWithMean__:
                    processes.append(self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]]))
                else :
                    processSample = self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]])
                    addConstant2Iterable(processSample, self.__means__[i])
                    processes.append(processSample)
            else :
                if not self.__liftWithMean__:
                    processSample = ot.ProcessSample(ot.Mesh(), 0, 1)
                    val_sample = self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]])
                    for j, value in enumerate(val_sample):
                        field = ot.Field(ot.Mesh(),1)
                        field.setValueAtIndex(0,value)
                        processSample.add(field)
                    processes.append(processSample)
                else :
                    processSample = ot.ProcessSample(ot.Mesh(), 0, 1)
                    val_sample = self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]])
                    mean = self.__means__[i]
                    for j, value in enumerate(val_sample):
                        field = ot.Field(ot.Mesh(),1)
                        field.setValueAtIndex(0,[value[0]+mean]) # adding mean
                        processSample.add(field)
                    processes.append(processSample)
            jumpDim += self.__mode_count__[i]
        return processes
Exemple #3
0
    def simulate(self, value_input=None, reset=True, **kwargs):
        """Simulate the fmu.

        Parameters
        ----------
        value_input : Vector of input values.

        reset : Boolean, toggle resetting the FMU prior to simulation. True by
        default.

        time : Sequence of floats, time vector (optional).

        timestep : Float, time step in seconds (optional).

        Additional keyword arguments are passed on to the 'simulate' method of
        the underlying PyFMI model object.

        """


        kwargs.setdefault("initialization_script", self.initialization_script)

        kwargs_simulate = fmi.parse_kwargs_simulate(
            value_input, name_input=self.getFMUInputDescription(),
            name_output=self.getFMUOutputDescription(),
            model=self.model, **kwargs)

        if "final_time" in kwargs.keys():
            raise Warning("final_time must be set in the constructor.")
        if "start_time" in kwargs.keys():
            raise Warning("start_time must be set in the constructor.")

        simulation = fmi.simulate(self.model, 
            reset=reset,
            start_time=self.start_time,
            final_time=self.final_time, 
            **kwargs_simulate)

        time, values = fmi.strip_simulation(simulation,
                                    name_output=self.getOutputDescription(),
                                    final="trajectory")
        local_mesh = ot.Mesh([[t] for t in time], [[i, i + 1] for i in range(len(time) - 1)])
        interpolation = ot.P1LagrangeInterpolation(local_mesh, self.getOutputMesh(), self.getOutputDimension())
        return interpolation(values)
Exemple #4
0
# Test realization
print('One realization= ')
print(myCompositeProcess.getRealization())

# future
print('future=', myCompositeProcess.getFuture(5))

#
# Create a spatial  dynamical function
# Create the function g : R^2 --> R^2
#               (x1,x2) --> (x1^2, x1+x2)
g = ot.SymbolicFunction(['x1', 'x2'], ['x1^2', 'x1+x2'])

# Convert g : R --> R into a spatial fucntion
myDynFunc = ot.ValueFunction(g, ot.Mesh(2))

# Then g acts on processes X: Omega * R^nSpat --> R^2

#
# Create a trend function fTrend: R^n --> R^q
# for example for  myXtProcess of dimension 2
# defined on a bidimensional mesh
# fTrend : R^2 --> R^2
#          (t1, t2) --> (1+2t1, 1+3t2)
fTrend = ot.SymbolicFunction(['t1', 't2'], ['1+2*t1', '1+3*t2'])

#
# Create a Gaussian process of dimension 2
# which mesh is of box of dimension 2
Exemple #5
0
class AggregatedKarhunenLoeveResults(object):
    '''Class allowing us to aggregated scalar distributions and stochastic processes.

    Thanks to the Karhunen-Loève expansion we can consider a process with a given
    covariance model as a vector of random variables following a centered normal law.

    By stacking the scalar distributions and the vectors representative of the fields we
    obtain a unique vector representation of our aggregate.

    It is a link between a non homogenous ensemble of fields and scalars to a unique vector
    of scalars.

    '''
    def __init__(self, composedKLResultsAndDistributions):
        '''Initializes the aggregation

        Parameters
        ----------
        composedKLResultsAndDistributions : list
            list of ordered ot.Distribution and ot.KarhunenLoeveResult objects
        '''
        self.__KLResultsAndDistributions__ = atLeastList(composedKLResultsAndDistributions) #KLRL : Karhunen Loeve Result List
        assert len(self.__KLResultsAndDistributions__)>0
        self.__field_distribution_count__ = len(self.__KLResultsAndDistributions__)
        self.__name__ = 'Unnamed'
        self.__KL_lifting__ = []
        self.__KL_projecting__ = []

        #Flags
        self.__isProcess__ = [False]*self.__field_distribution_count__
        self.__has_distributions__ = False
        self.__unified_dimension__ = False
        self.__unified_mesh__ = False
        self.__isAggregated__ = False
        self.__means__ = [.0]*self.__field_distribution_count__
        self.__liftWithMean__ = False

        # checking the nature of eachelement of the input list
        for i in range(self.__field_distribution_count__):
            # If element is a Karhunen Loeve decomposition
            if isinstance(self.__KLResultsAndDistributions__[i], ot.KarhunenLoeveResult):
                # initializing lifting and projecting objects.
                self.__KL_lifting__.append(ot.KarhunenLoeveLifting(self.__KLResultsAndDistributions__[i]))
                self.__KL_projecting__.append(ot.KarhunenLoeveProjection(self.__KLResultsAndDistributions__[i]))
                self.__isProcess__[i] = True

            # If element is a distribution
            elif isinstance(self.__KLResultsAndDistributions__[i], (ot.Distribution, ot.DistributionImplementation)):
                self.__has_distributions__ = True
                if self.__KLResultsAndDistributions__[i].getMean()[0] != 0 :
                    print('The mean value of distribution {} at index {} of type {} is not 0.'.format(str('"'+self.__KLResultsAndDistributions__[i].getName()+'"'), str(i), self.__KLResultsAndDistributions__[i].getClassName()))
                    name_distr = self.__KLResultsAndDistributions__[i].getName()
                    self.__means__[i] = self.__KLResultsAndDistributions__[i].getMean()[0]
                    self.__KLResultsAndDistributions__[i] -= self.__means__[i]
                    self.__KLResultsAndDistributions__[i].setName(name_distr)
                    print('Distribution recentered and mean added to list of means')
                    print('Set the "liftWithMean" flag to true if you want to include the mean.')
                # We can say that the inverse iso probabilistic transformation is analoguous to lifting
                self.__KL_lifting__.append(self.__KLResultsAndDistributions__[i].getInverseIsoProbabilisticTransformation())
                # We can say that the iso probabilistic transformation is analoguous to projecting
                self.__KL_projecting__.append(self.__KLResultsAndDistributions__[i].getIsoProbabilisticTransformation())

        # If the function has distributions it cant be homogenous
        if not self.__has_distributions__ :
            self.__unified_mesh__ = all_same([self.__KLResultsAndDistributions__[i].getMesh() for i in range(self.__field_distribution_count__)])
            self.__unified_dimension__ = (   all_same([self.__KLResultsAndDistributions__[i].getCovarianceModel().getOutputDimension() for i in range(self.__field_distribution_count__)])\
                                         and all_same([self.__KLResultsAndDistributions__[i].getCovarianceModel().getInputDimension() for i in range(self.__field_distribution_count__)]))

        # If only one object is passed it has to be an decomposed aggregated process
        if self.__field_distribution_count__ == 1 :
            if hasattr(self.__KLResultsAndDistributions__[0], 'getCovarianceModel') and hasattr(self.__KLResultsAndDistributions__[0], 'getMesh'):
                #Cause when aggregated there is usage of multvariate covariance functions
                self.__isAggregated__ = self.__KLResultsAndDistributions__[0].getCovarianceModel().getOutputDimension() > self.__KLResultsAndDistributions__[0].getMesh().getDimension()
                print('Process seems to be aggregated. ')
            else :
                print('There is no point in passing only one process that is not aggregated')
                raise TypeError

        self.threshold = max([self.__KLResultsAndDistributions__[i].getThreshold() if hasattr(self.__KLResultsAndDistributions__[i], 'getThreshold') else 1e-3 for i in range(self.__field_distribution_count__)])
        #Now we gonna get the data we will usually need
        self.__process_distribution_description__ = [self.__KLResultsAndDistributions__[i].getName() for i in range(self.__field_distribution_count__)]
        self._checkSubNames()
        self.__mode_count__ = [self.__KLResultsAndDistributions__[i].getEigenValues().getSize() if hasattr(self.__KLResultsAndDistributions__[i], 'getEigenValues') else 1 for i in range(self.__field_distribution_count__)]
        self.__mode_description__ = self._getModeDescription()

    def __repr__(self):
        '''Visual representation of the object
        '''
        covarianceList = self.getCovarianceModel()
        eigValList = self.getEigenValues()
        meshList = self.getMesh()
        reprStr = '| '.join(['class = ComposedKarhunenLoeveResultsAndDistributions',
                             'name = {}'.format(self.getName()),
                            'Aggregation Order = {}'.format(str(self.__field_distribution_count__)),
                            'Threshold = {}'.format(str(self.threshold)),
                            *['Covariance Model {} = '.format(str(i))+covarianceList[i].__repr__() for i in range(self.__field_distribution_count__)],
                            *['Eigen Value {} = '.format(str(i))+eigValList[i].__repr__() for i in range(self.__field_distribution_count__)],
                            *['Mesh {} = '.format(str(i))+meshList[i].__repr__().partition('data=')[0] for i in range(self.__field_distribution_count__)]])
        return reprStr


    def _checkSubNames(self):
        """Check's the names of the objects passed to see if they are all unique
        or if default ones have to be assigned"""
        if len(set(self.__process_distribution_description__)) != len(self.__process_distribution_description__) :
            print('The process names are not unique.')
            print('Using generic name. ')
            for i, process in enumerate(self.__KLResultsAndDistributions__):
                oldName = process.getName()
                newName = 'X_'+str(i)
                print('Old name was {}, new one is {}'.format(oldName, newName))
                process.setName(newName)
            self.__process_distribution_description__ = [self.__KLResultsAndDistributions__[i].getName() for i in range(self.__field_distribution_count__)]

    def _getModeDescription(self):
        """Returns the description of each element of the input vector.
        (The vector obtained once the processes expanded and stacked with the distribution)
        """
        modeDescription = list()
        for i, nMode in enumerate(self.__mode_count__):
            for j in range(nMode):
                modeDescription.append(self.__process_distribution_description__[i]+'_'+str(j))
        return modeDescription

    def _checkCoefficients(self, coefficients):
        '''Function to check if the vector passed has the right number of
        elements'''
        nModes = sum(self.__mode_count__)
        if (isinstance(coefficients, ot.Point), len(coefficients) == nModes):
            return True
        elif (isinstance(coefficients, (ot.Sample, ot.SampleImplementation)) and len(coefficients[0]) == nModes):
            return True
        else :
            print('The vector passed has not the right number of elements.')
            print('n° elems: {} != {}'.format(str(len(coefficients)), str(nModes)))
            return False

    # new method
    def getMean(self, i = None):
        '''Get the mean value of the stochastic processes and the scalar distributions

        Parameters
        ----------
        i : int
            index of distribution or process
        '''
        if i is not None:
            return self.__means__[i]
        else :
            return self.__means__

    # new method
    def setMean(self, i, val ):
        '''Sets the mean of the variable at the index i to a value

        Parameters
        ----------
        i : int
            index of distribution or process
        val : float, int
            value to which we set the mean

        '''
        self.__means__[i] = val

    # new method
    def setLiftWithMean(self, theBool):
        '''Flag to say if we add the mean to the generated values of fields or scalars
        If not, all the events are centered

        Parameters
        ----------
        theBool : bool
            if to lift the distributions and processes to their non homogenous
            original space with their mean value or centereds
        '''
        self.__liftWithMean__ = theBool

    def getClassName(self):
        '''Returns a list of the class each process/distribution belongs to.
        '''
        classNames=[self.__KLResultsAndDistributions__[i].__class__.__name__ for i in range(self.__field_distribution_count__) ]
        return list(set(classNames))

    def getCovarianceModel(self):
        '''Returns a list of covariance models for each process.
        '''
        return [self.__KLResultsAndDistributions__[i].getCovarianceModel() if hasattr(self.__KLResultsAndDistributions__[i], 'getCovarianceModel') else None for i in range(self.__field_distribution_count__) ]

    def getEigenValues(self):
        '''Returns a list of the eigen values for each process.
        '''
        return [self.__KLResultsAndDistributions__[i].getEigenValues() if hasattr(self.__KLResultsAndDistributions__[i], 'getEigenValues') else None for i in range(self.__field_distribution_count__) ]

    def getId(self):
        '''Returns a list containing the ID of each process/distribution.
        '''
        return [self.__KLResultsAndDistributions__[i].getId() for i in range(self.__field_distribution_count__) ]

    def getImplementation(self):
        '''Returns a list containing the implementation of each process/distribution, else None.
        '''
        return [self.__KLResultsAndDistributions__[i].getImplementation() if hasattr(self.__KLResultsAndDistributions__[i], 'getImplementation') else None for i in range(self.__field_distribution_count__) ]

    def getMesh(self):
        '''Returns a list containing the mesh of each process or None if it's a distribution.
        '''
        return [self.__KLResultsAndDistributions__[i].getMesh() if hasattr(self.__KLResultsAndDistributions__[i], 'getMesh') else None for i in range(self.__field_distribution_count__) ]

    def getModes(self):
        '''Returns a list containing the modes of each process, None if distribution
        '''
        return [self.__KLResultsAndDistributions__[i].getModes() if hasattr(self.__KLResultsAndDistributions__[i], 'getModes') else None for i in range(self.__field_distribution_count__) ]

    def getModesAsProcessSample(self):
        '''Returns a list containing the modes as a pcess sample for each process in the aggregation.
        '''
        return [self.__KLResultsAndDistributions__[i].getModesAsProcessSample() if hasattr(self.__KLResultsAndDistributions__[i], 'getModesAsProcessSample') else None for i in range(self.__field_distribution_count__) ]

    def getName(self):
        '''Returns the name of the aggregation object.
        '''
        return self.__name__

    def getProjectionMatrix(self):
        '''Returns the projection matrix for each Karhunen-Loeve decomposition,
        None if it's a distribution.
        '''
        return [self.__KLResultsAndDistributions__[i].getProjectionMatrix() if hasattr(self.__KLResultsAndDistributions__[i], 'getProjectionMatrix') else None for i in range(self.__field_distribution_count__) ]

    def getScaledModes(self):
        '''Returns the scaled modes for each Karhunen-Loeve decomposition,
        None if it's a distribution.
        '''
        return [self.__KLResultsAndDistributions__[i].getScaledModes() if hasattr(self.__KLResultsAndDistributions__[i], 'getScaledModes') else None for i in range(self.__field_distribution_count__) ]

    def getScaledModesAsProcessSample(self):
        '''Returns the scaled modes as a proess sample for each Karhunen-Loeve decomposition,
        None if it's a distribution.
        '''
        return [self.__KLResultsAndDistributions__[i].getScaledModesAsProcessSample() if hasattr(self.__KLResultsAndDistributions__[i], 'getScaledModes') else None for i in range(self.__field_distribution_count__) ]

    def getThreshold(self):
        '''Gets the global threshold for the Karhunen-Loeve expansions approximation.
        '''
        return self.threshold

    def setName(self,name):
        '''Sets the name of the aggregation object.
        '''
        self.__name__ = name

    def liftAsProcessSample(self, coefficients):
        '''Function to lift a sample of coefficients into a collections of
        process samples and points.

        Parameters
        ----------
        coefficients : ot.Sample
            sample of values, follwing a centered normal law in general

        Returns
        -------
        processes : list
            ordered list of samples of scalars (ot.Sample) and field samples (ot.ProcessSample)
        '''
        assert isinstance(coefficients, (ot.Sample, ot.SampleImplementation))
        print('Lifting as process sample')
        jumpDim = 0
        processes = []
        for i in range(self.__field_distribution_count__):
            if self.__isProcess__[i] :
                if not self.__liftWithMean__:
                    processes.append(self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]]))
                else :
                    processSample = self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]])
                    addConstant2Iterable(processSample, self.__means__[i])
                    processes.append(processSample)
            else :
                if not self.__liftWithMean__:
                    processSample = ot.ProcessSample(ot.Mesh(), 0, 1)
                    val_sample = self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]])
                    for j, value in enumerate(val_sample):
                        field = ot.Field(ot.Mesh(),1)
                        field.setValueAtIndex(0,value)
                        processSample.add(field)
                    processes.append(processSample)
                else :
                    processSample = ot.ProcessSample(ot.Mesh(), 0, 1)
                    val_sample = self.__KL_lifting__[i](coefficients[:, jumpDim : jumpDim + self.__mode_count__[i]])
                    mean = self.__means__[i]
                    for j, value in enumerate(val_sample):
                        field = ot.Field(ot.Mesh(),1)
                        field.setValueAtIndex(0,[value[0]+mean]) # adding mean
                        processSample.add(field)
                    processes.append(processSample)
            jumpDim += self.__mode_count__[i]
        return processes

    def liftAsField(self, coefficients):
                '''Function to lift a vector of coefficients into a list of
        process samples and points.

        Parameters
        ----------
        coefficients : ot.Point
            one vector values, follwing a centered normal law in general

        Returns
        -------
        to return : list
            ordered list of scalars (ot.Point) and fields (ot.Field)
        '''
        assert isinstance(coefficients, (ot.Point)), 'function only lifts points'
        valid = self._checkCoefficients(coefficients)
        print('Lifting as field')
        if valid :
            to_return = []
            jumpDim = 0
            for i in range(self.__field_distribution_count__):
                if self.__isProcess__[i] :
                    field = self.__KLResultsAndDistributions__[i].liftAsField(coefficients[jumpDim : jumpDim + self.__mode_count__[i]])
                    jumpDim += self.__mode_count__[i]
                    if not self.__liftWithMean__:
                        to_return.append(field)
                    else :
                        vals = field.getValues()
                        vals += self.__means__[i]
                        field.setValues(vals)
                        to_return.append(field)
                else :
                    value = self.__KL_lifting__[i](coefficients[jumpDim : jumpDim + self.__mode_count__[i]])
                    jumpDim += self.__mode_count__[i]
                    if not self.__liftWithMean__:
                        #print('field value is',value)
                        field = ot.Field(ot.Mesh(),1)
                        field.setValueAtIndex(0,value)
                        to_return.append(field)
                    else :
                        #print('field value is',value)
                        field = ot.Field(ot.Mesh(),1)
                        value[0] += self.__means__[i]
                        field.setValueAtIndex(0,value)
                        to_return.append(field)
            return to_return
        else :
            raise Exception('DimensionError : the vector of coefficient has the wrong shape')
Exemple #6
0
algo_kl_process_1D = ot.KarhunenLoeveP1Algorithm(
    mesh_1D, process_1D.getCovarianceModel())
algo_kl_process_1D.run()
kl_results_1D = algo_kl_process_1D.getResult()

algo_kl_process_2D = ot.KarhunenLoeveP1Algorithm(
    mesh_2D, process_2D.getCovarianceModel())
algo_kl_process_2D.run()
kl_results_2D = algo_kl_process_2D.getResult()

### Now let's compose our Karhunen Loeve Results and our distributions.
composedKLResultsAndDistributions = aklr.AggregatedKarhunenLoeveResults(
    [kl_results_2D, kl_results_1D, scalar_distribution])

### Now let's see if we manage to project and lift the realizations we had before.
realizationFields = [field_2D, field_1D, ot.Field(ot.Mesh(), [scalar_0[0]])]
projectedCoeffs = composedKLResultsAndDistributions.project(realizationFields)
print('Projected coefficients are :', projectedCoeffs)
liftedFieldsO = composedKLResultsAndDistributions.liftAsField(projectedCoeffs)
print('Lifted fields are :', liftedFieldsO)

### Now let's use our function wrapper and see if we get the same results!
dummyWrapper = klgfw.KarhunenLoeveGeneralizedFunctionWrapper(
    composedKLResultsAndDistributions, dummyFunction2Wrap, None, 1)

print('testing call:')
dummyWrapper(projectedCoeffs)


class TestComposeAndWrap(unittest.TestCase):
    def testLiftAndProject(self,
Exemple #7
0
vertices.append([0.0, 0.0, 0.0])
vertices.append([0.0, 0.0, 1.0])
vertices.append([0.0, 1.0, 0.0])
vertices.append([0.0, 1.0, 1.0])
vertices.append([1.0, 0.0, 0.0])
vertices.append([1.0, 0.0, 1.0])
vertices.append([1.0, 1.0, 0.0])
vertices.append([1.0, 1.0, 1.0])
simplicies = []
simplicies.append([0, 1, 2, 4])
simplicies.append([3, 5, 6, 7])
simplicies.append([1, 2, 3, 6])
simplicies.append([1, 2, 4, 6])
simplicies.append([1, 3, 5, 6])
simplicies.append([1, 4, 5, 6])
mesh3D = ot.Mesh(vertices, simplicies)


def myPyFunc(X):
    Xs = ot.Sample(X)
    Y = Xs * ([2.0] * Xs.getDimension())
    Y.setDescription(ot.Description.BuildDefault(values.getDimension(), "Y"))
    return Y


in_dim = 3
out_dim = 3

myFunc = ot.PythonFieldFunction(mesh3D, in_dim, mesh3D, out_dim, myPyFunc)
print('myFunc=', myFunc)
Exemple #8
0
# and AbsoluteExponential models
covarianceModel = ot.SquaredExponential([7.63, 2.11], [7.38])

# 3) Basis definition
basis = ot.ConstantBasisFactory(inputDimension).build()

# Kriging algorithm
algo = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
algo.setOptimizeParameters(False)  # do not optimize hyper-parameters
algo.run()
result = algo.getResult()

vertices = [[1.0, 0.0], [2.0, 0.0], [2.0, 1.0], [1.0, 1.0], [1.5, 0.5]]
simplicies = [[0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4]]

mesh2D = ot.Mesh(vertices, simplicies)
process = ot.ConditionedGaussianProcess(result, mesh2D)

# Get a realization of the process
realization = process.getRealization()
print("realization = ", repr(realization))

# Get a sample & compare it to expectation
sample = process.getSample(5000)
mean = sample.computeMean()
print("Mean over 5000 realizations = ", repr(mean))

# Check if one can sample the process over a mesh containing conditioning points
# and 100 new points
vertices = ot.Sample(inputSample)
vertices.add(
Exemple #9
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot
import os

ot.TESTPREAMBLE()

nrVertices = 100
vertices = ot.Normal().getSample(nrVertices).sort()
simplices = [[i, i + 1] for i in range(nrVertices - 1)]
mesh1 = ot.Mesh(vertices, simplices)
vertices *= -1.0
mesh2 = ot.Mesh(vertices, simplices)

for mesh in [mesh1, mesh2]:
    lowerBound = mesh.getLowerBound()[0]
    upperBound = mesh.getUpperBound()[0]
    n = mesh.getSimplicesNumber()
    print("mesh=", mesh, "lowerBound=", lowerBound, "upperBound=", upperBound,
          n, "simplices")
    algo = ot.EnclosingSimplexMonotonic1D(mesh.getVertices())

    ot.RandomGenerator.SetSeed(0)
    test = ot.Sample(ot.Uniform(-3.0, 3.0).getSample(1000))

    vertices = mesh.getVertices()
    for vertex in test:
        index = algo.query(vertex)
        x = vertex[0]
        if x < lowerBound or x > upperBound:
Exemple #10
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

mesh = ot.RegularGrid(0.0, 1.0, 4)
values = [(x, 2.0 * x, x * x) for x in mesh.getValues()]
outPoint = [2.5]
interpolation = ot.P1LagrangeInterpolation(mesh, ot.Mesh([outPoint]),
                                           len(values[0]))
print("Interpolation=", interpolation)
print("Values at", outPoint, "=", interpolation(values))
Exemple #11
0
    print("mesh1D=", mesh1D)

    # Manual bounding box
    mesh1D = mesher1D.build(levelSet1D, ot.Interval(-10.0, 10.0))
    print("mesh1D=", mesh1D)

    # The 2D mesher
    mesher2D = ot.LevelSetMesher([5] * 2)
    print("mesher2D=", mesher2D)

    function2D = ot.SymbolicFunction(
        ["x0", "x1"], ["cos(x0 * x1)/(1 + 0.1 * (x0^2 + x1^2))"])
    levelSet2D = ot.LevelSet(function2D, level)

    # Automatic bounding box
    mesh2D = ot.Mesh(mesher2D.build(levelSet2D))
    print("mesh2D=", mesh2D)

    # Manual bounding box
    mesh2D = mesher2D.build(levelSet2D, ot.Interval([-10.0] * 2, [10.0] * 2))
    print("mesh2D=", mesh2D)

    # The 3D mesher
    mesher3D = ot.LevelSetMesher([3] * 3)
    print("mesher3D=", mesher3D)

    function3D = ot.SymbolicFunction(
        ["x0", "x1", "x2"],
        ["cos(x0 * x1 + x2)/(1 + 0.1*(x0^2 + x1^2 + x2^2))"])
    levelSet3D = ot.LevelSet(function3D, level)
import openturns as ot

mesh = ot.Mesh(5)

for v in mesh:
    print(v)

print('OK')

mesh.exportToTXT('/tmp/mesh.txt')
Exemple #13
0
# check that hmat library was found
print('7: HMatrix (hmat-oss)'.ljust(width), end=' ')
try:
    # This is a little bit tricky because HMat 1.0 fails with 1x1 matrices
    ot.ResourceMap.SetAsUnsignedInteger('TemporalNormalProcess-SamplingMethod',
                                        1)
    vertices = [[0.0, 0.0, 0.0]]
    vertices.append([1.0, 0.0, 0.0])
    vertices.append([0.0, 1.0, 0.0])
    vertices.append([0.0, 0.0, 1.0])
    simplices = [[0, 1, 2, 3]]
    # Discard messages from HMat
    ot.Log.Show(0)
    process = ot.TemporalNormalProcess(ot.ExponentialModel(3),
                                       ot.Mesh(vertices, simplices))
    f = process.getRealization()
    print('OK')
except:
    print('no')

# check that nlopt library was found
print('8: optimization (NLopt)'.ljust(width), end=' ')
try:
    problem = ot.OptimizationProblem()
    algo = ot.SLSQP()
    algo.setProblem(problem)
    print('OK')
except:
    print('no')
Exemple #14
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot
import math as m

ot.PlatformInfo.SetNumericalPrecision(6)
# 1D example
mesh1D = ot.Mesh()
print("Default 1D mesh=", mesh1D)
vertices = ot.Sample(0, 1)
vertices.add([0.5])
vertices.add([1.5])
vertices.add([2.1])
vertices.add([2.7])
simplicies = [[]] * 3
simplicies[0] = [0, 1]
simplicies[1] = [1, 2]
simplicies[2] = [2, 3]
mesh1D = ot.Mesh(vertices, simplicies)
mesh1Ddomain = ot.MeshDomain(mesh1D)
tree = ot.KDTree(vertices)
enclosingSimplex = ot.EnclosingSimplexAlgorithm(vertices, simplicies)
print("1D mesh=", mesh1D)
print("Is empty? ", mesh1D.isEmpty())
print("vertices=", mesh1D.getVertices())
print("simplices=", mesh1D.getSimplices())
print("volume=", "%.3f" % mesh1D.getVolume())
print("simplices volume=", mesh1D.computeSimplicesVolume())
p = [1.3]
print("is p=", p, " in mesh? ", mesh1Ddomain.contains(p))
Exemple #15
0
    for i, vertex in enumerate(test):
        index = bvh.query(vertex)
        if index >= nrSimplices:
            print(i, "is outside")
        else:
            found, coordinates = mesh.checkPointInSimplexWithCoordinates(
                vertex, index)
            if not found:
                print("Wrong simplex found for", vertex, "(index=", index,
                      simplices[index], "barycentric coordinates=",
                      coordinates)

    indices = bvh.query(test)
    for i, index in enumerate(indices):
        if index >= nrSimplices:
            print(i, "is outside")
        else:
            found, coordinates = mesh.checkPointInSimplexWithCoordinates(
                test[i], index)
            if not found:
                print("Wrong simplex found for", test[i], "(index=", index,
                      simplices[index], "barycentric coordinates=",
                      coordinates)

# segfault with 1 simplex
mesh = ot.Mesh([[0.0, 0.0], [1.0, 0.0], [0.5, 1.0]], [[0, 1, 2]])
bvh = ot.BoundingVolumeHierarchy(mesh.getVertices(), mesh.getSimplices())
print(bvh.query([0.125, 0.2]))
print(bvh.query([0.125, 0.3]))
Exemple #16
0
sample.add(point2)
sample.add(point3)
sample.add(point4)
sample.add(point2)
sample.add(point4)
sample.add(point3)
print(sample)
study.add('sample', sample)

mesh = ot.IntervalMesher([50] * 3).build(ot.Interval(3))
study.add('mesh', mesh)

study.save()

study2 = ot.Study()
study2.setStorageManager(ot.XMLH5StorageManager(fileName))

study2.load()
sample2 = ot.Sample()
study2.fillObject('sample', sample2)
print(sample2)
assert sample == sample2, "wrong sample"

mesh2 = ot.Mesh()
study2.fillObject('mesh', mesh2)
assert mesh == mesh2, "wrong mesh"

# cleanup
os.remove(fileName)
os.remove(fileName.replace(".xml.gz", ".h5"))
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

# Define the vertices of the mesh
vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0],
            [1.5, 1.0], [2.0, 1.5], [0.5, 1.5]]
# Define the simplices of the mesh
simplices = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [2, 4, 5], [0, 2, 5]]
# Create the Mesh
mesh2D = ot.Mesh(vertices, simplices)
# Create a Graph
graph = ot.Graph('Mesh 2D', '', '', True, 'bottomright')
graph.add(mesh2D.draw())

# Then, draw it
fig = plt.figure(figsize=(4, 4))
axis = fig.add_subplot(111)
View(graph, figure=fig, axes=[axis], add_legend=True)
axis.set_xlim(auto=True)
Exemple #18
0
    # Set Numerical precision to 4
    ot.PlatformInfo.SetNumericalPrecision(4)
    sampleSize = 40
    spatialDimension = 1

    # Create the function to estimate
    model = ot.SymbolicFunction(["x0"], ["x0"])

    X = ot.Sample(sampleSize, spatialDimension)
    for i in range(sampleSize):
        X[i, 0] = 3.0 + (8.0 * i) / sampleSize
    Y = model(X)

    # Add a small noise to data
    Y += ot.GaussianProcess(ot.AbsoluteExponential(
        [0.1], [0.2]), ot.Mesh(X)).getRealization().getValues()

    basis = ot.LinearBasisFactory(spatialDimension).build()
    # Case of a misspecified covariance model
    covarianceModel = ot.DiracCovarianceModel(spatialDimension)
    print("===================================================\n")
    algo = ot.GeneralLinearModelAlgorithm(X, Y, covarianceModel, basis)
    algo.run()

    result = algo.getResult()
    print("\ncovariance (dirac, optimized)=", result.getCovarianceModel())
    print("trend (dirac, optimized)=", result.getTrendCoefficients())
    print("===================================================\n")
    # Now without estimating covariance parameters
    basis = ot.LinearBasisFactory(spatialDimension).build()
    covarianceModel = ot.DiracCovarianceModel(spatialDimension)
Exemple #19
0
field = ot.Field(mesh, values)
evaluation = ot.P1LagrangeEvaluation(field)
x = [2.3]
y = evaluation(x)
print(y)
ott.assert_almost_equal(y, [0.55])

# Learning sample on meshD
mesher = ot.IntervalMesher([7, 7])
lowerbound = [-1.0, -1.0]
upperBound = [1, 1]
interval = ot.Interval(lowerbound, upperBound)
meshD = mesher.build(interval)
sample = ot.ProcessSample(meshD, 10, 1)
field = ot.Field(meshD, 1)
for k in range(sample.getSize()):
    field.setValues(ot.Normal().getSample(64))
    sample[k] = field
lagrange = ot.P1LagrangeEvaluation(sample)
# New mesh
mesh = ot.Mesh(
    ot.MonteCarloExperiment(ot.ComposedDistribution([ot.Uniform(-1, 1)] * 2),
                            200).generate())

point = mesh.getVertices()[0]
y = lagrange(point)
print(y)
index = lagrange.getEnclosingSimplexAlgorithm().query(point)
print(index)
assert index == 12, "wrong index"
# ------------------

# %%
# In this paragraph we create a mesh :math:`\mathcal{M}` associated to a domain :math:`\mathcal{D} \in \mathbb{R}^n`.
#
# A mesh is defined from vertices in :math:`\mathbb{R}^n` and a topology that connects the vertices: the simplices. The simplex :math:`Indices([i_1,\dots, i_{n+1}])` relies the vertices of index :math:`(i_1,\dots, i_{n+1})` in :math:`\mathbb{N}^n`. In dimension 1, a simplex is an interval :math:`Indices([i_1,i_2])`; in dimension 2, it is a triangle :math:`Indices([i_1,i_2, i_3])`.
#
# The library enables to easily create a mesh which is a box of dimension :math:`d=1` or :math:`d=2` regularly meshed in all its directions, thanks to the object IntervalMesher.
#
# Consider :math:`X: \Omega \times \mathcal{D} \rightarrow \mathbb{R}^d` a multivariate stochastic process of dimension :math:`d`, where :math:`\mathcal{D} \in \mathbb{R}^n`. The mesh :math:`\mathcal{M}` is a discretization of the domain :math:`\mathcal{D}`.

# %%
# A  one dimensional mesh is created and represented by :
vertices = [[0.5], [1.5], [2.1], [2.7]]
simplicies = [[0, 1], [1, 2], [2, 3]]
mesh1D = ot.Mesh(vertices, simplicies)
graph1 = mesh1D.draw()
graph1.setTitle('One dimensional mesh')
view = viewer.View(graph1)

# %%
# We define a bidimensional mesh :
vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0], [2.0, 1.5],
            [0.5, 1.5]]
simplicies = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [2, 4, 5], [0, 2, 5]]
mesh2D = ot.Mesh(vertices, simplicies)
graph2 = mesh2D.draw()
graph2.setTitle('Bidimensional mesh')
graph2.setLegendPosition('bottomright')
view = viewer.View(graph2)
        print("Checking %s" % (x_train_value))
        indices = np.argwhere(x_test == x_train_value)
        if len(indices) == 1:
            print("   Delete %s" % (x_train_value))
            x_test_filtered = np.delete(x_test_filtered, indices[0, 0])
        else:
            print("   OK")
    return x_test_filtered


# %%
vertices_filtered = deleteCommonValues(np.array(x_train.asPoint()),
                                       np.array(vertices.asPoint()))

# %%
evaluationMesh = ot.Mesh(ot.Sample([[vf] for vf in vertices_filtered]))

# %%
process = ot.ConditionedGaussianProcess(krigingResult, evaluationMesh)

# %%
trajectories = process.getSample(10)
type(trajectories)

# %%
# The `getSample` method returns a `ProcessSample`. By comparison, the `getSample` method of a `KrigingRandomVector` would return a `Sample`.

# %%
graph = trajectories.drawMarginal()
graph.add(plot_data_test(x_test, y_test))
graph.add(plot_data_train(x_train, y_train))
Exemple #22
0
# Set Numerical precision to 4
ot.PlatformInfo.SetNumericalPrecision(4)
sampleSize = 40
inputDimension = 1

# Create the function to estimate
model = ot.SymbolicFunction(["x0"], ["x0"])

X = ot.Sample(sampleSize, inputDimension)
for i in range(sampleSize):
    X[i, 0] = 3.0 + (8.0 * i) / sampleSize
Y = model(X)

# Add a small noise to data
Y += ot.GaussianProcess(ot.AbsoluteExponential([0.1], [0.2]),
                        ot.Mesh(X)).getRealization().getValues()

basis = ot.LinearBasisFactory(inputDimension).build()
# Case of a misspecified covariance model
covarianceModel = ot.DiracCovarianceModel(inputDimension)
print("===================================================\n")
algo = ot.GeneralLinearModelAlgorithm(X, Y, covarianceModel, basis)
algo.run()

result = algo.getResult()
print("\ncovariance (dirac, optimized)=", result.getCovarianceModel())
print("trend (dirac, optimized)=", result.getTrendCoefficients())
print("===================================================\n")

# Now without estimating covariance parameters
basis = ot.LinearBasisFactory(inputDimension).build()
Exemple #23
0
 def __init__(self):
     self.__mesh = ot.Mesh(42)