Exemple #1
0
def run(args):
    statistics = None
    try:
        if args.number_streams is None:
            logger.warn(
                " -nstreams default value is determined automatically for a device. "
                "Although the automatic selection usually provides a reasonable performance, "
                "but it still may be non-optimal for some cases, for more information look at README. "
            )

        command_line_arguments = get_command_line_arguments(sys.argv)
        if args.report_type:
            statistics = StatisticsReport(
                StatisticsReport.Config(args.report_type, args.report_folder))
            statistics.add_parameters(
                StatisticsReport.Category.COMMAND_LINE_PARAMETERS,
                command_line_arguments)

        def is_flag_set_in_command_line(flag):
            return any(x.strip('-') == flag for x, y in command_line_arguments)

        device_name = args.target_device

        devices = parse_devices(device_name)
        device_number_streams = parse_nstreams_value_per_device(
            devices, args.number_streams)

        config = {}
        if args.load_config:
            load_config(args.load_config, config)

        # ------------------------------ 2. Loading Inference Engine ---------------------------------------------------
        next_step(step_id=2)

        benchmark = Benchmark(args.target_device, args.number_infer_requests,
                              args.number_iterations, args.time, args.api_type)

        ## CPU (MKLDNN) extensions
        if CPU_DEVICE_NAME in device_name and args.path_to_extension:
            benchmark.add_extension(path_to_extension=args.path_to_extension)

        ## GPU (clDNN) Extensions
        if GPU_DEVICE_NAME in device_name and args.path_to_cldnn_config:
            if GPU_DEVICE_NAME not in config.keys():
                config[GPU_DEVICE_NAME] = {}
            config[GPU_DEVICE_NAME]['CONFIG_FILE'] = args.path_to_cldnn_config

        if GPU_DEVICE_NAME in config.keys(
        ) and 'CONFIG_FILE' in config[GPU_DEVICE_NAME].keys():
            cldnn_config = config[GPU_DEVICE_NAME]['CONFIG_FILE']
            benchmark.add_extension(path_to_cldnn_config=cldnn_config)

        version = benchmark.get_version_info()

        logger.info(version)

        # --------------------- 3. Read the Intermediate Representation of the network ---------------------------------
        next_step()

        start_time = datetime.utcnow()
        ie_network = benchmark.read_network(args.path_to_model)
        duration_ms = "{:.2f}".format(
            (datetime.utcnow() - start_time).total_seconds() * 1000)
        logger.info("Read network took {} ms".format(duration_ms))
        if statistics:
            statistics.add_parameters(
                StatisticsReport.Category.EXECUTION_RESULTS,
                [('read network time (ms)', duration_ms)])

        # --------------------- 4. Resizing network to match image sizes and given batch -------------------------------

        next_step()
        if args.batch_size and args.batch_size != ie_network.batch_size:
            benchmark.reshape(ie_network, args.batch_size)
        batch_size = ie_network.batch_size
        logger.info('Network batch size: {}'.format(ie_network.batch_size))

        # --------------------- 5. Configuring input of the model ------------------------------------------------------
        next_step()

        config_network_inputs(ie_network)

        # --------------------- 6. Setting device configuration --------------------------------------------------------
        next_step()

        perf_counts = False
        for device in devices:
            if device not in config.keys():
                config[device] = {}
            ## Set performance counter
            if is_flag_set_in_command_line('pc'):
                ## set to user defined value
                config[device][
                    'PERF_COUNT'] = 'YES' if args.perf_counts else 'NO'
            elif 'PERF_COUNT' in config[device].keys(
            ) and config[device]['PERF_COUNT'] == 'YES':
                logger.warn("Performance counters for {} device is turned on. "
                            .format(device) +
                            "To print results use -pc option.")
            elif args.report_type in [averageCntReport, detailedCntReport]:
                logger.warn(
                    "Turn on performance counters for {} device ".format(
                        device) +
                    "since report type is {}.".format(args.report_type))
                config[device]['PERF_COUNT'] = 'YES'
            elif args.exec_graph_path is not None:
                logger.warn("Turn on performance counters for {} device ".
                            format(device) + "due to execution graph dumping.")
                config[device]['PERF_COUNT'] = 'YES'
            else:
                ## set to default value
                config[device][
                    'PERF_COUNT'] = 'YES' if args.perf_counts else 'NO'
            perf_counts = True if config[device][
                'PERF_COUNT'] == 'YES' else perf_counts

            def set_throughput_streams():
                key = device + "_THROUGHPUT_STREAMS"
                if device in device_number_streams.keys():
                    ## set to user defined value
                    supported_config_keys = benchmark.ie.get_metric(
                        device, 'SUPPORTED_CONFIG_KEYS')
                    if key not in supported_config_keys:
                        raise Exception(
                            "Device {} doesn't support config key '{}'! ".
                            format(device, key) +
                            "Please specify -nstreams for correct devices in format  <dev1>:<nstreams1>,<dev2>:<nstreams2>"
                        )
                    config[device][key] = device_number_streams[device]
                elif key not in config[device].keys(
                ) and args.api_type == "async":
                    logger.warn(
                        "-nstreams default value is determined automatically for {} device. "
                        .format(device) +
                        "Although the automatic selection usually provides a reasonable performance,"
                        "but it still may be non-optimal for some cases, for more information look at README."
                    )
                    config[device][key] = device + "_THROUGHPUT_AUTO"
                if key in config[device].keys():
                    device_number_streams[device] = config[device][key]

            if device == CPU_DEVICE_NAME:  # CPU supports few special performance-oriented keys
                # limit threading for CPU portion of inference
                if args.number_threads and is_flag_set_in_command_line(
                        "nthreads"):
                    config[device]['CPU_THREADS_NUM'] = str(
                        args.number_threads)

                if is_flag_set_in_command_line(
                        "enforcebf16") or is_flag_set_in_command_line(
                            "enforce_bfloat16"):
                    config[device][
                        'ENFORCE_BF16'] = 'YES' if args.enforce_bfloat16 else 'NO'

                if is_flag_set_in_command_line('pin'):
                    ## set to user defined value
                    config[device][
                        'CPU_BIND_THREAD'] = args.infer_threads_pinning
                elif 'CPU_BIND_THREAD' not in config[device].keys():
                    if MULTI_DEVICE_NAME in device_name and GPU_DEVICE_NAME in device_name:
                        logger.warn(
                            "Turn off threads pinning for {}".format(device) +
                            "device since multi-scenario with GPU device is used."
                        )
                        config[device]['CPU_BIND_THREAD'] = 'NO'
                    else:
                        ## set to default value
                        config[device][
                            'CPU_BIND_THREAD'] = args.infer_threads_pinning

                ## for CPU execution, more throughput-oriented execution via streams
                set_throughput_streams()
            elif device == GPU_DEVICE_NAME:
                ## for GPU execution, more throughput-oriented execution via streams
                set_throughput_streams()

                if MULTI_DEVICE_NAME in device_name and CPU_DEVICE_NAME in device_name:
                    logger.warn(
                        "Turn on GPU trottling. Multi-device execution with the CPU + GPU performs best with GPU trottling hint, "
                        +
                        "which releases another CPU thread (that is otherwise used by the GPU driver for active polling)"
                    )
                    config[device]['CLDNN_PLUGIN_THROTTLE'] = '1'
            elif device == MYRIAD_DEVICE_NAME:
                config[device]['LOG_LEVEL'] = 'LOG_INFO'
        perf_counts = perf_counts

        benchmark.set_config(config)

        # --------------------- 7. Loading the model to the device -----------------------------------------------------
        next_step()

        start_time = datetime.utcnow()
        exe_network = benchmark.load_network(ie_network)
        duration_ms = "{:.2f}".format(
            (datetime.utcnow() - start_time).total_seconds() * 1000)
        logger.info("Load network took {} ms".format(duration_ms))
        if statistics:
            statistics.add_parameters(
                StatisticsReport.Category.EXECUTION_RESULTS,
                [('load network time (ms)', duration_ms)])
        ## Update number of streams
        for device in device_number_streams.keys():
            key = device + '_THROUGHPUT_STREAMS'
            device_number_streams[device] = benchmark.ie.get_config(
                device, key)

        # --------------------- 8. Setting optimal runtime parameters --------------------------------------------------
        next_step()

        # Number of requests
        infer_requests = exe_network.requests

        # Iteration limit
        benchmark.niter = get_number_iterations(benchmark.niter,
                                                benchmark.nireq, args.api_type)

        # ------------------------------------ 9. Creating infer requests and filling input blobs ----------------------
        next_step()

        paths_to_input = list()
        if args.paths_to_input:
            for path in args.paths_to_input:
                paths_to_input.append(
                    os.path.abspath(*path) if args.paths_to_input else None)
        set_inputs(paths_to_input, batch_size, ie_network.inputs,
                   infer_requests)

        if statistics:
            statistics.add_parameters(
                StatisticsReport.Category.RUNTIME_CONFIG, [
                    ('topology', ie_network.name),
                    ('target device', device_name),
                    ('API', args.api_type),
                    ('precision', "UNSPECIFIED"),
                    ('batch size', str(batch_size)),
                    ('number of iterations',
                     str(benchmark.niter) if benchmark.niter else "0"),
                    ('number of parallel infer requests', str(
                        benchmark.nireq)),
                    ('duration (ms)',
                     str(
                         get_duration_in_milliseconds(
                             benchmark.duration_seconds))),
                ])

            for nstreams in device_number_streams.items():
                statistics.add_parameters(
                    StatisticsReport.Category.RUNTIME_CONFIG, [
                        ("number of {} streams".format(
                            nstreams[0]), str(nstreams[1])),
                    ])

        # ------------------------------------ 10. Measuring performance -----------------------------------------------

        output_string = process_help_inference_string(benchmark)

        next_step(additional_info=output_string)
        progress_bar_total_count = 10000
        if benchmark.niter and not benchmark.duration_seconds:
            progress_bar_total_count = benchmark.niter

        progress_bar = ProgressBar(progress_bar_total_count,
                                   args.stream_output,
                                   args.progress) if args.progress else None

        fps, latency_ms, total_duration_sec, iteration = benchmark.infer(
            exe_network, batch_size, progress_bar)

        # ------------------------------------ 11. Dumping statistics report -------------------------------------------
        next_step()

        if args.dump_config:
            dump_config(args.dump_config, config)
            logger.info(
                "Inference Engine configuration settings were dumped to {}".
                format(args.dump_config))

        if args.exec_graph_path:
            dump_exec_graph(exe_network, args.exec_graph_path)

        if perf_counts:
            perfs_count_list = []
            for ni in range(int(benchmark.nireq)):
                perfs_count_list.append(
                    exe_network.requests[ni].get_perf_counts())
            if args.perf_counts:
                print_perf_counters(perfs_count_list)
            if statistics:
                statistics.dump_performance_counters(perfs_count_list)

        if statistics:
            statistics.add_parameters(
                StatisticsReport.Category.EXECUTION_RESULTS, [
                    ('total execution time (ms)', '{:.2f}'.format(
                        get_duration_in_milliseconds(total_duration_sec))),
                    ('total number of iterations', str(iteration)),
                ])
            if MULTI_DEVICE_NAME not in device_name:
                statistics.add_parameters(
                    StatisticsReport.Category.EXECUTION_RESULTS, [
                        ('latency (ms)', '{:.2f}'.format(latency_ms)),
                    ])

            statistics.add_parameters(
                StatisticsReport.Category.EXECUTION_RESULTS, [
                    ('throughput', '{:.2f}'.format(fps)),
                ])

        if statistics:
            statistics.dump()

        print('Count:      {} iterations'.format(iteration))
        print('Duration:   {:.2f} ms'.format(
            get_duration_in_milliseconds(total_duration_sec)))
        if MULTI_DEVICE_NAME not in device_name:
            print('Latency:    {:.2f} ms'.format(latency_ms))
        print('Throughput: {:.2f} FPS'.format(fps))

        del exe_network

        next_step.step_id = 0
    except Exception as e:
        logger.exception(e)

        if statistics:
            statistics.add_parameters(
                StatisticsReport.Category.EXECUTION_RESULTS, [
                    ('error', str(e)),
                ])
            statistics.dump()
        sys.exit(1)
def main(args):
    statistics = None
    try:
        if args.number_streams is None:
                logger.warn(" -nstreams default value is determined automatically for a device. "
                            "Although the automatic selection usually provides a reasonable performance, "
                            "but it still may be non-optimal for some cases, for more information look at README. ")

        if args.report_type:
          statistics = StatisticsReport(StatisticsReport.Config(args.report_type, args.report_folder))
          statistics.add_parameters(StatisticsReport.Category.COMMAND_LINE_PARAMETERS, get_command_line_arguments(sys.argv))


        # ------------------------------ 2. Loading Inference Engine ---------------------------------------------------
        next_step()

        device_name = args.target_device.upper()

        benchmark = Benchmark(args.target_device, args.number_infer_requests,
                              args.number_iterations, args.time, args.api_type)

        benchmark.add_extension(args.path_to_extension, args.path_to_cldnn_config)

        version = benchmark.get_version_info()

        logger.info(version)

        # --------------------- 3. Read the Intermediate Representation of the network ---------------------------------
        next_step()

        start_time = datetime.now()
        ie_network = read_network(args.path_to_model)
        duration_ms = "{:.2f}".format((datetime.now() - start_time).total_seconds() * 1000)
        if statistics:
            logger.info("Read network took {} ms".format(duration_ms))
            statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
                                      [
                                          ('read network time (ms)', duration_ms)
                                      ])

        # --------------------- 4. Resizing network to match image sizes and given batch -------------------------------

        next_step()
        if args.batch_size and args.batch_size != ie_network.batch_size:
            benchmark.reshape(ie_network, args.batch_size)
        batch_size = ie_network.batch_size
        logger.info('Network batch size: {}, precision: {}'.format(ie_network.batch_size, ie_network.precision))

        # --------------------- 5. Configuring input of the model ------------------------------------------------------
        next_step()

        config_network_inputs(ie_network)

        # --------------------- 6. Setting device configuration --------------------------------------------------------
        next_step()
        benchmark.set_config(args.number_streams, args.api_type, args.number_threads,
                             args.infer_threads_pinning)

        # --------------------- 7. Loading the model to the device -----------------------------------------------------
        next_step()

        start_time = datetime.now()
        perf_counts = True if args.perf_counts or \
                              args.report_type in [ averageCntReport, detailedCntReport ] or \
                              args.exec_graph_path else False
        exe_network = benchmark.load_network(ie_network, perf_counts, args.number_infer_requests)
        duration_ms = "{:.2f}".format((datetime.now() - start_time).total_seconds() * 1000)
        if statistics:
            logger.info("Load network took {} ms".format(duration_ms))
            statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
                                      [
                                          ('load network time (ms)', duration_ms)
                                      ])

        # --------------------- 8. Setting optimal runtime parameters --------------------------------------------------
        next_step()

        # Number of requests
        infer_requests = exe_network.requests
        benchmark.nireq = len(infer_requests)

        # Iteration limit
        benchmark.niter = get_number_iterations(benchmark.niter, len(exe_network.requests), args.api_type)

        # ------------------------------------ 9. Creating infer requests and filling input blobs ----------------------
        next_step()

        request_queue = InferRequestsQueue(infer_requests)

        path_to_input = os.path.abspath(args.path_to_input) if args.path_to_input else None
        requests_input_data = get_inputs(path_to_input, batch_size, ie_network.inputs, infer_requests)

        if statistics:
            statistics.add_parameters(StatisticsReport.Category.RUNTIME_CONFIG,
                                      [
                                          ('topology', ie_network.name),
                                          ('target device', device_name),
                                          ('API', args.api_type),
                                          ('precision', str(ie_network.precision)),
                                          ('batch size', str(ie_network.batch_size)),
                                          ('number of iterations', str(benchmark.niter) if benchmark.niter else "0"),
                                          ('number of parallel infer requests', str(benchmark.nireq)),
                                          ('duration (ms)', str(get_duration_in_milliseconds(benchmark.duration_seconds))),
                                       ])

            for nstreams in benchmark.device_number_streams.items():
                statistics.add_parameters(StatisticsReport.Category.RUNTIME_CONFIG,
                                         [
                                            ("number of {} streams".format(nstreams[0]), str(nstreams[1])),
                                         ])

        # ------------------------------------ 10. Measuring performance -----------------------------------------------

        output_string = process_help_inference_string(benchmark)

        next_step(output_string)
        progress_bar_total_count = 10000
        if benchmark.niter and not benchmark.duration_seconds:
            progress_bar_total_count = benchmark.niter

        progress_bar = ProgressBar(progress_bar_total_count, args.stream_output, args.progress)

        fps, latency_ms, total_duration_sec, iteration = benchmark.infer(request_queue, requests_input_data,
                                                                         batch_size, progress_bar)

        # ------------------------------------ 11. Dumping statistics report -------------------------------------------
        next_step()

        if args.exec_graph_path:
            dump_exec_graph(exe_network, args.exec_graph_path)

        if perf_counts:
            perfs_count_list = []
            for ni in range(int(benchmark.nireq)):
                perfs_count_list.append(exe_network.requests[ni].get_perf_counts())
            if args.perf_counts:
                print_perf_counters(perfs_count_list)
            if statistics:
              statistics.dump_performance_counters(perfs_count_list)

        if statistics:
            statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
                                      [
                                          ('total execution time (ms)', '{:.2f}'.format(get_duration_in_milliseconds(total_duration_sec))),
                                          ('total number of iterations', str(iteration)),
                                      ])
            if MULTI_DEVICE_NAME not in device_name:
                statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
                                          [
                                              ('latency (ms)', '{:.2f}'.format(latency_ms)),
                                          ])

            statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
                                      [
                                          ('throughput', '{:.2f}'.format(fps)),
                                      ])

        if statistics:
          statistics.dump()

        print('Count:      {} iterations'.format(iteration))
        print('Duration:   {:.2f} ms'.format(get_duration_in_milliseconds(total_duration_sec)))
        if MULTI_DEVICE_NAME not in device_name:
            print('Latency:    {:.2f} ms'.format(latency_ms))
        print('Throughput: {:.2f} FPS'.format(fps))

        del exe_network

        next_step.step_id = 0
    except Exception as e:
        logger.exception(e)

        if statistics:
            statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
                                      [
                                          ('error', str(e)),
                                      ])
            statistics.dump()
def benchmark_app(args):
    try:
        # ------------------------------ 2. Loading Inference Engine ---------------------------------------------------
        next_step()

        benchmark = Benchmark(args.target_device, args.number_infer_requests,
                              args.number_iterations, args.time, args.api_type)

        benchmark.add_extension(args.path_to_extension, args.path_to_cldnn_config)

        version = benchmark.get_version_info()

        logger.info(version)

        # --------------------- 3. Read the Intermediate Representation of the network ---------------------------------
        next_step()

        ie_network = read_network(args.path_to_model)

        # --------------------- 4. Resizing network to match image sizes and given batch -------------------------------

        next_step()
        if args.batch_size and args.batch_size != ie_network.batch_size:
            benchmark.reshape(ie_network, args.batch_size)
        batch_size = ie_network.batch_size
        logger.info('Network batch size: %s, precision: %s', ie_network.batch_size, ie_network.precision)

        # --------------------- 5. Configuring input of the model ------------------------------------------------------
        next_step()

        config_network_inputs(ie_network)

        # --------------------- 6. Setting device configuration --------------------------------------------------------
        next_step()
        benchmark.set_config(args.number_streams, args.api_type, args.number_threads, args.infer_threads_pinning)

        # --------------------- 7. Loading the model to the device -----------------------------------------------------
        next_step()

        perf_counts = False
        if args.perf_counts or args.exec_graph_path:
            perf_counts = True
        exe_network = benchmark.load_network(ie_network, perf_counts, args.number_infer_requests)

        # --------------------- 8. Setting optimal runtime parameters --------------------------------------------------
        next_step()

        # Number of requests
        infer_requests = exe_network.requests
        benchmark.nireq = len(infer_requests)

        # Iteration limit
        benchmark.niter = get_number_iterations(benchmark.niter, len(exe_network.requests), args.api_type)

        # ------------------------------------ 9. Creating infer requests and filling input blobs ----------------------
        next_step()

        request_queue = InferRequestsQueue(infer_requests)

        path_to_input = os.path.abspath(args.path_to_input) if args.path_to_input else None
        requests_input_data = get_inputs(path_to_input, batch_size, ie_network.inputs, infer_requests)


        # ------------------------------------ 10. Measuring performance -----------------------------------------------

        output_string = process_help_inference_string(benchmark)

        next_step(output_string)
        progress_bar_total_count = 10000
        if benchmark.niter and not benchmark.duration_seconds:
            progress_bar_total_count = benchmark.niter

        progress_bar = ProgressBar(progress_bar_total_count, args.stream_output, args.progress)

        benchmark.infer(request_queue, requests_input_data, batch_size, progress_bar)

        # ------------------------------------ 11. Dumping statistics report -------------------------------------------
        next_step()

        if args.exec_graph_path:
            dump_exec_graph(exe_network, args.exec_graph_path)

        del exe_network

        next_step.step_id = 0
    except Exception as exc:
        logger.exception(exc)