Exemple #1
0
def test_rank_models():
    RE = RunEngine()

    # Create accurate fit
    motor = SynAxis(name='motor')
    det = SynSignal(name='centroid',
                    func=lambda: 5 * motor.read()['motor']['value'] + 2)
    fit1 = LinearFit('centroid', 'motor', update_every=None, name='Accurate')
    RE(scan([det], motor, -1, 1, 50), fit1)

    # Create inaccurate fit
    det2 = SynSignal(name='centroid',
                     func=lambda: 25 * motor.read()['motor']['value'] + 2)
    fit2 = LinearFit('centroid', 'motor', update_every=None, name='Inaccurate')
    RE(scan([det2], motor, -1, 1, 50), fit2)

    # Create inaccurate fit
    det3 = SynSignal(name='centroid',
                     func=lambda: 12 * motor.read()['motor']['value'] + 2)
    fit3 = LinearFit('centroid',
                     'motor',
                     update_every=None,
                     name='Midly Inaccurate')
    RE(scan([det3], motor, -1, 1, 50), fit3)

    # Rank models
    ranking = rank_models([fit2, fit1, fit3], target=22, x=4)
    assert ranking[0] == fit1
    assert ranking[1] == fit3
    assert ranking[2] == fit2
Exemple #2
0
def test_walk_to_pixel(RE, one_bounce_system):
    logger.debug("test_walk_to_pixel")
    _, mot, det = one_bounce_system

    ##########################
    # Test on simple devices #
    ##########################
    simple_motor = SynAxis(name='motor')
    simple_det = SynSignal(name='det',
                           func=lambda: 5*simple_motor.read()['motor']['value']
                                + 2)

    # Naive step
    plan = run_wrapper(walk_to_pixel(simple_det, simple_motor, 200, 0,
                                     first_step=1e-6,
                                     tolerance=10, average=None,
                                     target_fields=['det', 'motor'],
                                     max_steps=3))
    RE(plan)
    assert np.isclose(simple_det.read()['det']['value'], 200, atol=1)

    simple_motor.set(0.)

    # Gradient
    simple_motor = SynAxis(name='motor')
    simple_det = SynSignal(name='det',
                           func=lambda: 5*simple_motor.read()['motor']['value']
                                + 2)
    plan = run_wrapper(walk_to_pixel(simple_det, simple_motor, 200, 0,
                                     gradient=1.6842e+06,
                                     tolerance=10, average=None,
                                     target_fields=['det', 'motor'],
                                     max_steps=3))
    RE(plan)
    assert np.isclose(simple_det.read()['det']['value'], 200, atol=1)

    ##########################
    # Test on full model #
    ##########################
    # Naive step
    cent = 'detector_stats2_centroid_x'
    plan = run_wrapper(walk_to_pixel(det, mot, 200, 0, first_step=1e-6,
                                     tolerance=10, average=None,
                                     target_fields=[cent, 'sim_alpha'],
                                     max_steps=3))
    RE(plan)
    assert np.isclose(det.read()[det.name + "_" + cent]['value'], 200, atol=1)

    mot.set(0.)

    # Gradient
    plan = run_wrapper(walk_to_pixel(det, mot, 200, 0, gradient=1.6842e+06,
                                     tolerance=10, average=None,
                                     target_fields=[cent, 'sim_alpha'],
                                     max_steps=3))
    RE(plan)
    assert np.isclose(det.read()[det.name + "_" + cent]['value'], 200, atol=10)
Exemple #3
0
def test_multi_fit():
    RE = RunEngine()

    # Expected values of fit
    expected = {'x0': 5, 'x1': 4, 'x2': 3}

    m1 = SynAxis(name='m1')
    m2 = SynAxis(name='m2')
    det = SynSignal(name='centroid',
                    func=lambda: 5 + 4 * m1.read()['m1']['value'] + 3 * m2.
                    read()['m2']['value'])

    # Assemble fitting callback
    cb = MultiPitchFit('centroid', ('m1', 'm2'), update_every=None)

    RE(outer_product_scan([det], m1, -1, 1, 10, m2, -1, 1, 10, False), cb)

    # Check accuracy of fit
    logger.debug(cb.result.fit_report())
    for k, v in expected.items():
        assert np.allclose(cb.result.values[k], v, atol=1e-6)

    # Check we create an accurate estimate
    assert np.allclose(cb.eval(a0=5, a1=10), 55, atol=1e-5)
    assert np.allclose(cb.backsolve(55, a1=10)['a0'], 5, atol=1e-5)
    assert np.allclose(cb.backsolve(55, a0=5)['a1'], 10, atol=1e-5)
Exemple #4
0
def test_linear_fit():
    RE = RunEngine()

    # Expected values of fit
    expected = {'slope': 5, 'intercept': 2}

    motor = SynAxis(name='motor')
    det = SynSignal(name='centroid',
                    func=lambda: 5 * motor.read()['motor']['value'] + 2)

    # Assemble fitting callback
    cb = LinearFit('centroid', 'motor', update_every=None)

    RE(scan([det], motor, -1, 1, 50), cb)

    # Check accuracy of fit
    for k, v in expected.items():
        assert np.allclose(cb.result.values[k], v, atol=1e-6)

    # Check we create an accurate estimate
    assert np.allclose(cb.eval(x=10), 52, atol=1e-5)
    assert np.allclose(cb.eval(motor=10), 52, atol=1e-5)
    assert np.allclose(cb.backsolve(52)['x'], 10, atol=1e-5)