Exemple #1
0
def calculate_contract_risk(**kwargs):

    contract_frame = kwargs['contract_frame']
    current_date = kwargs['current_date']
    contract_frame['risk'] = np.nan
    contract_frame['contract_multiplier'] = np.nan

    for i in range(len(contract_frame.index)):

        ticker_raw = contract_frame['ticker'].iloc[i]
        ticker_output = ticker_raw.split('-')
        contract_multiplier = cmi.contract_multiplier[
            contract_frame['ticker_head'].iloc[i]]
        contract_frame['contract_multiplier'].iloc[i] = contract_multiplier

        if len(ticker_output) == 1:
            ticker = ticker_output[0]
            data_out = gfp.get_futures_price_preloaded(
                ticker=ticker, settle_date_to=current_date)
            recent_data = data_out.iloc[-10:]
            contract_frame['risk'].iloc[i] = contract_multiplier * (
                recent_data['close_price'].max() -
                recent_data['close_price'].min())

        if len(ticker_output) > 1:
            aligned_output = opUtil.get_aligned_futures_data(
                contract_list=ticker_output,
                contracts_back=1,
                aggregation_method=12,
                date_to=current_date)

            aligned_data = aligned_output['aligned_data']
            recent_data = aligned_data.iloc[-10:]
            spread_price = recent_data['c1']['close_price'] - recent_data[
                'c2']['close_price']
            contract_frame['risk'].iloc[i] = contract_multiplier * (
                spread_price.max() - spread_price.min())

    return contract_frame
def get_intraday_spread_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    #print(ticker_list)

    ticker_list = [x for x in ticker_list if x is not None]
    ticker_head_list = [
        cmi.get_contract_specs(x)['ticker_head'] for x in ticker_list
    ]
    ticker_class_list = [cmi.ticker_class[x] for x in ticker_head_list]

    #print('-'.join(ticker_list))

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [
            exp.get_days2_expiration(ticker=x,
                                     date_to=date_to,
                                     instrument='futures')['tr_dte']
            for x in ticker_list
        ]

    if 'aggregation_method' in kwargs.keys(
    ) and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:

        amcb_output = [
            opUtil.get_aggregation_method_contracts_back(
                cmi.get_contract_specs(x)) for x in ticker_list
        ]
        aggregation_method = max(
            [x['aggregation_method'] for x in amcb_output])
        contracts_back = min([x['contracts_back'] for x in amcb_output])

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {
            x: gfp.get_futures_price_preloaded(ticker_head=x)
            for x in list(set(ticker_head_list))
        }

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = True

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to, 5 * 365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    if 'num_days_back_4intraday' in kwargs.keys():
        num_days_back_4intraday = kwargs['num_days_back_4intraday']
    else:
        num_days_back_4intraday = 10

    contract_multiplier_list = [
        cmi.contract_multiplier[x] for x in ticker_head_list
    ]

    aligned_output = opUtil.get_aligned_futures_data(
        contract_list=ticker_list,
        tr_dte_list=tr_dte_list,
        aggregation_method=aggregation_method,
        contracts_back=contracts_back,
        date_to=date_to,
        futures_data_dictionary=futures_data_dictionary,
        use_last_as_current=use_last_as_current)

    aligned_data = aligned_output['aligned_data']
    current_data = aligned_output['current_data']

    if ticker_head_list in fixed_weight_future_spread_list:
        weights_output = sutil.get_spread_weights_4contract_list(
            ticker_head_list=ticker_head_list)
        spread_weights = weights_output['spread_weights']
        portfolio_weights = weights_output['portfolio_weights']
    else:
        regress_output = stats.get_regression_results({
            'x':
            aligned_data['c2']['change_1'][-60:],
            'y':
            aligned_data['c1']['change_1'][-60:]
        })
        spread_weights = [1, -regress_output['beta']]
        portfolio_weights = [
            1, -regress_output['beta'] * contract_multiplier_list[0] /
            contract_multiplier_list[1]
        ]

    aligned_data['spread'] = 0
    aligned_data['spread_pnl_1'] = 0
    aligned_data['spread_pnl1'] = 0
    spread_settle = 0

    last5_years_indx = aligned_data['settle_date'] >= datetime5_years_ago

    num_contracts = len(ticker_list)

    for i in range(num_contracts):
        aligned_data['spread'] = aligned_data['spread'] + aligned_data[
            'c' + str(i + 1)]['close_price'] * spread_weights[i]
        spread_settle = spread_settle + current_data[
            'c' + str(i + 1)]['close_price'] * spread_weights[i]
        aligned_data[
            'spread_pnl_1'] = aligned_data['spread_pnl_1'] + aligned_data[
                'c' + str(i + 1)]['change_1'] * portfolio_weights[
                    i] * contract_multiplier_list[i]
        aligned_data[
            'spread_pnl1'] = aligned_data['spread_pnl1'] + aligned_data[
                'c' + str(i + 1)]['change1_instant'] * portfolio_weights[
                    i] * contract_multiplier_list[i]

    aligned_data['spread_normalized'] = aligned_data['spread'] / aligned_data[
        'c1']['close_price']

    data_last5_years = aligned_data[last5_years_indx]

    percentile_vector = stats.get_number_from_quantile(
        y=data_last5_years['spread_pnl_1'].values,
        quantile_list=[1, 15, 85, 99],
        clean_num_obs=max(100, round(3 * len(data_last5_years.index) / 4)))

    downside = (percentile_vector[0] + percentile_vector[1]) / 2
    upside = (percentile_vector[2] + percentile_vector[3]) / 2

    date_list = [
        exp.doubledate_shift_bus_days(double_date=date_to, shift_in_days=x)
        for x in reversed(range(1, num_days_back_4intraday))
    ]
    date_list.append(date_to)

    intraday_data = opUtil.get_aligned_futures_data_intraday(
        contract_list=ticker_list, date_list=date_list)

    if len(intraday_data.index) == 0:
        return {
            'downside': downside,
            'upside': upside,
            'intraday_data': intraday_data,
            'trading_data': intraday_data,
            'spread_weight': spread_weights[1],
            'portfolio_weight': portfolio_weights[1],
            'z': np.nan,
            'recent_trend': np.nan,
            'intraday_mean10': np.nan,
            'intraday_std10': np.nan,
            'intraday_mean5': np.nan,
            'intraday_std5': np.nan,
            'intraday_mean2': np.nan,
            'intraday_std2': np.nan,
            'intraday_mean1': np.nan,
            'intraday_std1': np.nan,
            'aligned_output': aligned_output,
            'spread_settle': spread_settle,
            'data_last5_years': data_last5_years,
            'ma_spread_lowL': np.nan,
            'ma_spread_highL': np.nan,
            'ma_spread_low': np.nan,
            'ma_spread_high': np.nan,
            'intraday_sharp': np.nan
        }

    intraday_data['time_stamp'] = [
        x.to_datetime() for x in intraday_data.index
    ]
    intraday_data['settle_date'] = intraday_data['time_stamp'].apply(
        lambda x: x.date())

    end_hour = min([cmi.last_trade_hour_minute[x] for x in ticker_head_list])
    start_hour = max(
        [cmi.first_trade_hour_minute[x] for x in ticker_head_list])

    trade_start_hour = dt.time(9, 30, 0, 0)

    if 'Ag' in ticker_class_list:
        start_hour1 = dt.time(0, 45, 0, 0)
        end_hour1 = dt.time(7, 45, 0, 0)
        selection_indx = [
            x for x in range(len(intraday_data.index))
            if ((intraday_data['time_stamp'].iloc[x].time() < end_hour1) and
                (intraday_data['time_stamp'].iloc[x].time() >= start_hour1)) or
            ((intraday_data['time_stamp'].iloc[x].time() < end_hour) and
             (intraday_data['time_stamp'].iloc[x].time() >= start_hour))
        ]

    else:
        selection_indx = [
            x for x in range(len(intraday_data.index))
            if (intraday_data.index[x].to_datetime().time() < end_hour) and (
                intraday_data.index[x].to_datetime().time() >= start_hour)
        ]

    intraday_data = intraday_data.iloc[selection_indx]

    intraday_data['spread'] = 0

    for i in range(num_contracts):
        intraday_data[
            'c' + str(i + 1),
            'mid_p'] = (intraday_data['c' + str(i + 1)]['best_bid_p'] +
                        intraday_data['c' + str(i + 1)]['best_ask_p']) / 2

        intraday_data['spread'] = intraday_data['spread'] + intraday_data[
            'c' + str(i + 1)]['mid_p'] * spread_weights[i]

    unique_settle_dates = intraday_data['settle_date'].unique()
    intraday_data['spread1'] = np.nan

    for i in range(len(unique_settle_dates) - 1):
        if (intraday_data['settle_date'] == unique_settle_dates[i]).sum() == \
                (intraday_data['settle_date'] == unique_settle_dates[i+1]).sum():
            intraday_data.loc[intraday_data['settle_date'] == unique_settle_dates[i],'spread1'] = \
                intraday_data['spread'][intraday_data['settle_date'] == unique_settle_dates[i+1]].values

    intraday_data = intraday_data[intraday_data['settle_date'].notnull()]

    intraday_mean10 = intraday_data['spread'].mean()
    intraday_std10 = intraday_data['spread'].std()

    intraday_data_last5days = intraday_data[
        intraday_data['settle_date'] >= cu.convert_doubledate_2datetime(
            date_list[-5]).date()]
    intraday_data_last2days = intraday_data[
        intraday_data['settle_date'] >= cu.convert_doubledate_2datetime(
            date_list[-2]).date()]
    intraday_data_yesterday = intraday_data[intraday_data['settle_date'] ==
                                            cu.convert_doubledate_2datetime(
                                                date_list[-1]).date()]

    intraday_mean5 = intraday_data_last5days['spread'].mean()
    intraday_std5 = intraday_data_last5days['spread'].std()

    intraday_mean2 = intraday_data_last2days['spread'].mean()
    intraday_std2 = intraday_data_last2days['spread'].std()

    intraday_mean1 = intraday_data_yesterday['spread'].mean()
    intraday_std1 = intraday_data_yesterday['spread'].std()

    intraday_z = (spread_settle - intraday_mean5) / intraday_std5

    num_obs_intraday = len(intraday_data.index)
    num_obs_intraday_half = round(num_obs_intraday / 2)
    intraday_tail = intraday_data.tail(num_obs_intraday_half)

    num_positives = sum(
        intraday_tail['spread'] > intraday_data['spread'].mean())
    num_negatives = sum(
        intraday_tail['spread'] < intraday_data['spread'].mean())

    if num_positives + num_negatives != 0:
        recent_trend = 100 * (num_positives - num_negatives) / (num_positives +
                                                                num_negatives)
    else:
        recent_trend = np.nan

    intraday_data_shifted = intraday_data.groupby('settle_date').shift(-60)
    intraday_data['spread_shifted'] = intraday_data_shifted['spread']
    intraday_data[
        'delta60'] = intraday_data['spread_shifted'] - intraday_data['spread']

    intraday_data['ewma10'] = pd.ewma(intraday_data['spread'], span=10)
    intraday_data['ewma50'] = pd.ewma(intraday_data['spread'], span=50)
    intraday_data['ewma200'] = pd.ewma(intraday_data['spread'], span=200)

    intraday_data['ma40'] = pd.rolling_mean(intraday_data['spread'], 40)

    intraday_data[
        'ewma50_spread'] = intraday_data['spread'] - intraday_data['ewma50']
    intraday_data[
        'ma40_spread'] = intraday_data['spread'] - intraday_data['ma40']

    selection_indx = [
        x for x in range(len(intraday_data.index))
        if (intraday_data['time_stamp'].iloc[x].time() > trade_start_hour)
    ]
    selected_data = intraday_data.iloc[selection_indx]
    selected_data['delta60Net'] = (contract_multiplier_list[0] *
                                   selected_data['delta60'] /
                                   spread_weights[0])

    selected_data.reset_index(drop=True, inplace=True)
    selected_data['proxy_pnl'] = 0

    t_cost = cmi.t_cost[ticker_head_list[0]]

    ma_spread_low = np.nan
    ma_spread_high = np.nan
    ma_spread_lowL = np.nan
    ma_spread_highL = np.nan
    intraday_sharp = np.nan

    if sum(selected_data['ma40_spread'].notnull()) > 30:
        quantile_list = selected_data['ma40_spread'].quantile([0.1, 0.9])

        down_indx = selected_data['ma40_spread'] < quantile_list[0.1]
        up_indx = selected_data['ma40_spread'] > quantile_list[0.9]

        up_data = selected_data[up_indx]
        down_data = selected_data[down_indx]

        ma_spread_lowL = quantile_list[0.1]
        ma_spread_highL = quantile_list[0.9]

        #return {'selected_data':selected_data,'up_data':up_data,'up_indx':up_indx}

        selected_data.loc[up_indx,
                          'proxy_pnl'] = (-up_data['delta60Net'] -
                                          2 * num_contracts * t_cost).values
        selected_data.loc[down_indx,
                          'proxy_pnl'] = (down_data['delta60Net'] -
                                          2 * num_contracts * t_cost).values

        short_term_data = selected_data[
            selected_data['settle_date'] >= cu.convert_doubledate_2datetime(
                date_list[-5]).date()]
        if sum(short_term_data['ma40_spread'].notnull()) > 30:
            quantile_list = short_term_data['ma40_spread'].quantile([0.1, 0.9])
            ma_spread_low = quantile_list[0.1]
            ma_spread_high = quantile_list[0.9]

        if selected_data['proxy_pnl'].std() != 0:
            intraday_sharp = selected_data['proxy_pnl'].mean(
            ) / selected_data['proxy_pnl'].std()

    return {
        'downside': downside,
        'upside': upside,
        'intraday_data': intraday_data,
        'trading_data': selected_data,
        'spread_weight': spread_weights[1],
        'portfolio_weight': portfolio_weights[1],
        'z': intraday_z,
        'recent_trend': recent_trend,
        'intraday_mean10': intraday_mean10,
        'intraday_std10': intraday_std10,
        'intraday_mean5': intraday_mean5,
        'intraday_std5': intraday_std5,
        'intraday_mean2': intraday_mean2,
        'intraday_std2': intraday_std2,
        'intraday_mean1': intraday_mean1,
        'intraday_std1': intraday_std1,
        'aligned_output': aligned_output,
        'spread_settle': spread_settle,
        'data_last5_years': data_last5_years,
        'ma_spread_lowL': ma_spread_lowL,
        'ma_spread_highL': ma_spread_highL,
        'ma_spread_low': ma_spread_low,
        'ma_spread_high': ma_spread_high,
        'intraday_sharp': intraday_sharp
    }
def get_fm_signals(**kwargs):

    ticker_head = kwargs['ticker_head']
    date_to = kwargs['date_to']

    #print(ticker_head)

    ticker_class = cmi.ticker_class[ticker_head]

    datetime_to = cu.convert_doubledate_2datetime(date_to)

    date5_years_ago = cu.doubledate_shift(date_to,5*365)
    datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    data_out = gfp.get_futures_price_preloaded(ticker_head=ticker_head,settle_date_to=datetime_to)

    data4day = data_out[data_out['settle_date']==datetime_to]
    data4day = data4day[data4day['tr_dte']>=20]

    if len(data4day.index)<2:
        return {'ticker': '', 'comm_net': np.nan, 'spec_net': np.nan,
            'comm_cot_index_slow': np.nan, 'comm_cot_index_fast': np.nan, 'trend_direction': np.nan,'curve_slope': np.nan,
            'rsi_3': np.nan, 'rsi_7': np.nan, 'rsi_14': np.nan,
            'change1': np.nan,
            'change1_instant': np.nan,
            'change5': np.nan,
            'change10': np.nan,
            'change20': np.nan,
            'change1_dollar': np.nan,
            'change1_instant_dollar': np.nan,
            'change5_dollar': np.nan,
            'change10_dollar': np.nan,
            'change20_dollar': np.nan}

    data4day.sort_values('volume', ascending=False, inplace=True)
    data4day = data4day.iloc[:2]

    data4day.sort_values('tr_dte',ascending=True,inplace=True)

    ticker1 = data4day['ticker'].iloc[0]
    ticker2 = data4day['ticker'].iloc[1]

    tr_dte_list = [data4day['tr_dte'].iloc[0], data4day['tr_dte'].iloc[1]]

    amcb_output = opUtil.get_aggregation_method_contracts_back({'ticker_head': ticker_head, 'ticker_class': cmi.ticker_class[ticker_head]})
    aggregation_method = amcb_output['aggregation_method']
    contracts_back = amcb_output['contracts_back']

    futures_data_dictionary = {ticker_head: data_out}

    aligned_output = opUtil.get_aligned_futures_data(contract_list=[ticker1,ticker2],
                                                          tr_dte_list=tr_dte_list,
                                                          aggregation_method=aggregation_method,
                                                          contracts_back=contracts_back,
                                                          date_to=date_to,
                                                          futures_data_dictionary=futures_data_dictionary,
                                                          use_last_as_current=False)

    aligned_data = aligned_output['aligned_data']
    current_data = aligned_output['current_data']

    yield1_current = 100*(current_data['c1']['close_price']-current_data['c2']['close_price'])/current_data['c2']['close_price']
    yield1 = 100*(aligned_data['c1']['close_price']-aligned_data['c2']['close_price'])/aligned_data['c2']['close_price']

    last5_years_indx = aligned_data['settle_date']>=datetime5_years_ago

    yield1_last5_years = yield1[last5_years_indx]
    curve_slope = stats.get_quantile_from_number({'x':yield1_current,'y': yield1_last5_years})

    ticker_head_data = gfp.get_futures_price_preloaded(ticker_head=ticker_head)
    ticker_head_data = ticker_head_data[ticker_head_data['settle_date'] <= datetime_to]

    if ticker_class in ['Index', 'FX', 'Metal', 'Treasury', 'STIR']:

        merged_data = ticker_head_data[ticker_head_data['tr_dte'] >= 10]
        merged_data.sort_values(['settle_date', 'tr_dte'],ascending=True,inplace=True)
        merged_data.drop_duplicates(subset=['settle_date'], keep='first', inplace=True)

        merged_data['ma200'] = merged_data['close_price'].rolling(200).mean()
        merged_data['ma200_10'] = merged_data['ma200']-merged_data['ma200'].shift(10)
    else:
        data_out_front = ticker_head_data[ticker_head_data['tr_dte'] <= 60]
        data_out_front.drop_duplicates(subset=['settle_date'], keep='last', inplace=True)

        data_out_back = ticker_head_data[ticker_head_data['tr_dte'] > 60]
        data_out_back.drop_duplicates(subset=['settle_date'], keep='last', inplace=True)

        merged_data = pd.merge(data_out_front[['settle_date','tr_dte','close_price']],data_out_back[['tr_dte','close_price','settle_date','ticker','change_1']],how='inner',on='settle_date')
        merged_data['const_mat']=((merged_data['tr_dte_y']-60)*merged_data['close_price_x']+
                                  (60-merged_data['tr_dte_x'])*merged_data['close_price_y'])/\
                                 (merged_data['tr_dte_y']-merged_data['tr_dte_x'])

        merged_data['ma200'] = merged_data['const_mat'].rolling(200).mean()
        merged_data['ma200_10'] = merged_data['ma200']-merged_data['ma200'].shift(10)

    merged_data = merged_data[merged_data['settle_date']==datetime_to]

    if len(merged_data.index) == 0:
        trend_direction = np.nan
    elif merged_data['ma200_10'].iloc[0]>=0:
        trend_direction = 1
    else:
        trend_direction = -1

    ticker_data = gfp.get_futures_price_preloaded(ticker=ticker2,settle_date_to=datetime_to)

    ticker_data = ti.rsi(data_frame_input=ticker_data, change_field='change_1', period=3)
    ticker_data = ti.rsi(data_frame_input=ticker_data, change_field='change_1', period=7)
    ticker_data = ti.rsi(data_frame_input=ticker_data, change_field='change_1', period=14)

    cot_output = cot.get_cot_data(ticker_head=ticker_head, date_to=date_to)

    daily_noise = np.std(ticker_data['change_1'].iloc[-60:])

    if len(cot_output.index)>0:

        if ticker_class in ['FX','STIR','Index','Treasury']:

            cot_output['comm_long'] = cot_output['Asset Manager Longs']+cot_output['Dealer Longs']
            cot_output['comm_short'] = cot_output['Asset Manager Shorts']+cot_output['Dealer Shorts']
            cot_output['comm_net'] = cot_output['comm_long']-cot_output['comm_short']

            cot_output['spec_long'] = cot_output['Leveraged Funds Longs']
            cot_output['spec_short'] = cot_output['Leveraged Funds Shorts']
            cot_output['spec_net'] = cot_output['spec_long']-cot_output['spec_short']

        else:
            cot_output['comm_long'] = cot_output['Producer/Merchant/Processor/User Longs']+cot_output['Swap Dealer Longs']
            cot_output['comm_short'] = cot_output['Producer/Merchant/Processor/User Shorts']+cot_output['Swap Dealer Shorts']
            cot_output['comm_net'] = cot_output['comm_long']-cot_output['comm_short']
            cot_output['spec_long'] = cot_output['Money Manager Longs']+cot_output['Other Reportable Longs']
            cot_output['spec_short'] = cot_output['Money Manager Shorts']+cot_output['Other Reportable Shorts']
            cot_output['spec_net'] = cot_output['spec_long']-cot_output['spec_short']

        if (datetime_to-cot_output['settle_date'].iloc[-1]).days>=10:
            comm_net = np.nan
            spec_net = np.nan
        else:
            comm_net = cot_output['comm_net'].iloc[-1]
            spec_net = cot_output['spec_net'].iloc[-1]

        comm_net_min_slow = cot_output['comm_net'].iloc[-156:].min()
        comm_net_max_slow = cot_output['comm_net'].iloc[-156:].max()

        comm_cot_index_slow = 100*(comm_net-comm_net_min_slow)/(comm_net_max_slow-comm_net_min_slow)

        comm_net_min_fast = cot_output['comm_net'].iloc[-52:].min()
        comm_net_max_fast = cot_output['comm_net'].iloc[-52:].max()

        comm_cot_index_fast = 100*(comm_net-comm_net_min_fast)/(comm_net_max_fast-comm_net_min_fast)

    else:
        comm_net = np.nan
        spec_net = np.nan
        comm_cot_index_slow = np.nan
        comm_cot_index_fast = np.nan

    contract_multiplier = cmi.contract_multiplier[ticker_head]

    return {'ticker': ticker2, 'comm_net': comm_net, 'spec_net': spec_net,
            'comm_cot_index_slow': comm_cot_index_slow, 'comm_cot_index_fast': comm_cot_index_fast, 'trend_direction': trend_direction,'curve_slope': curve_slope,
            'rsi_3': ticker_data['rsi_3'].iloc[-1], 'rsi_7': ticker_data['rsi_7'].iloc[-1], 'rsi_14': ticker_data['rsi_14'].iloc[-1],
            'change1': ticker_data['change1'].iloc[-1]/daily_noise,
            'change1_instant': ticker_data['change1_instant'].iloc[-1]/daily_noise,
            'change5': ticker_data['change5'].iloc[-1]/daily_noise,
            'change10': ticker_data['change10'].iloc[-1]/daily_noise,
            'change20': ticker_data['change20'].iloc[-1]/daily_noise,
            'change1_dollar': ticker_data['change1'].iloc[-1]*contract_multiplier,
            'change1_instant_dollar': ticker_data['change1_instant'].iloc[-1]*contract_multiplier,
            'change5_dollar': ticker_data['change5'].iloc[-1]*contract_multiplier,
            'change10_dollar': ticker_data['change10'].iloc[-1]*contract_multiplier,
            'change20_dollar': ticker_data['change20'].iloc[-1]*contract_multiplier}
Exemple #4
0
def get_ics_signals(**kwargs):

    ticker = kwargs['ticker']
    #print(ticker)
    date_to = kwargs['date_to']
    con = msu.get_my_sql_connection(**kwargs)

    ticker_list = ticker.split('-')
    #print(ticker_list)
    ticker_head_list = [
        cmi.get_contract_specs(x)['ticker_head'] for x in ticker_list
    ]
    ticker_class = cmi.ticker_class[ticker_head_list[0]]

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {
            x: gfp.get_futures_price_preloaded(ticker_head=x)
            for x in list(set(ticker_head_list))
        }

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to, 5 * 365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    if 'num_days_back_4intraday' in kwargs.keys():
        num_days_back_4intraday = kwargs['num_days_back_4intraday']
    else:
        num_days_back_4intraday = 5

    tr_dte_list = [
        exp.get_days2_expiration(ticker=x,
                                 date_to=date_to,
                                 instrument='futures',
                                 con=con)['tr_dte'] for x in ticker_list
    ]

    amcb_output = [
        opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(x))
        for x in ticker_list
    ]
    aggregation_method = max([x['aggregation_method'] for x in amcb_output])
    contracts_back = min([x['contracts_back'] for x in amcb_output])
    contract_multiplier = cmi.contract_multiplier[ticker_head_list[0]]

    aligned_output = opUtil.get_aligned_futures_data(
        contract_list=ticker_list,
        tr_dte_list=tr_dte_list,
        aggregation_method=aggregation_method,
        contracts_back=contracts_back,
        date_to=date_to,
        futures_data_dictionary=futures_data_dictionary,
        use_last_as_current=True)

    aligned_data = aligned_output['aligned_data']
    last5_years_indx = aligned_data['settle_date'] >= datetime5_years_ago
    data_last5_years = aligned_data[last5_years_indx]

    data_last5_years['spread_pnl_1'] = aligned_data['c1'][
        'change_1'] - aligned_data['c2']['change_1']

    percentile_vector = stats.get_number_from_quantile(
        y=data_last5_years['spread_pnl_1'].values,
        quantile_list=[1, 15, 85, 99],
        clean_num_obs=max(100, round(3 * len(data_last5_years.index) / 4)))

    downside = contract_multiplier * (percentile_vector[0] +
                                      percentile_vector[1]) / 2
    upside = contract_multiplier * (percentile_vector[2] +
                                    percentile_vector[3]) / 2

    date_list = [
        exp.doubledate_shift_bus_days(double_date=date_to, shift_in_days=x)
        for x in reversed(range(1, num_days_back_4intraday))
    ]
    date_list.append(date_to)

    intraday_data = opUtil.get_aligned_futures_data_intraday(
        contract_list=[ticker], date_list=date_list)

    intraday_data['time_stamp'] = [
        x.to_datetime() for x in intraday_data.index
    ]
    intraday_data['settle_date'] = intraday_data['time_stamp'].apply(
        lambda x: x.date())

    end_hour = cmi.last_trade_hour_minute[ticker_head_list[0]]
    start_hour = cmi.first_trade_hour_minute[ticker_head_list[0]]

    if ticker_class == 'Ag':
        start_hour1 = dt.time(0, 45, 0, 0)
        end_hour1 = dt.time(7, 45, 0, 0)
        selection_indx = [
            x for x in range(len(intraday_data.index))
            if ((intraday_data['time_stamp'].iloc[x].time() < end_hour1) and
                (intraday_data['time_stamp'].iloc[x].time() >= start_hour1)) or
            ((intraday_data['time_stamp'].iloc[x].time() < end_hour) and
             (intraday_data['time_stamp'].iloc[x].time() >= start_hour))
        ]

    else:
        selection_indx = [
            x for x in range(len(intraday_data.index))
            if (intraday_data.index[x].to_datetime().time() < end_hour) and (
                intraday_data.index[x].to_datetime().time() >= start_hour)
        ]

    intraday_data = intraday_data.iloc[selection_indx]

    intraday_mean5 = np.nan
    intraday_std5 = np.nan

    intraday_mean2 = np.nan
    intraday_std2 = np.nan

    intraday_mean1 = np.nan
    intraday_std1 = np.nan

    if len(intraday_data.index) > 0:

        intraday_data['mid_p'] = (intraday_data['c1']['best_bid_p'] +
                                  intraday_data['c1']['best_ask_p']) / 2

        intraday_mean5 = intraday_data['mid_p'].mean()
        intraday_std5 = intraday_data['mid_p'].std()

        intraday_data_last2days = intraday_data[
            intraday_data['settle_date'] >= cu.convert_doubledate_2datetime(
                date_list[-2]).date()]
        intraday_data_yesterday = intraday_data[
            intraday_data['settle_date'] == cu.convert_doubledate_2datetime(
                date_list[-1]).date()]

        intraday_mean2 = intraday_data_last2days['mid_p'].mean()
        intraday_std2 = intraday_data_last2days['mid_p'].std()

        intraday_mean1 = intraday_data_yesterday['mid_p'].mean()
        intraday_std1 = intraday_data_yesterday['mid_p'].std()

    if 'con' not in kwargs.keys():
        con.close()

    return {
        'downside': downside,
        'upside': upside,
        'front_tr_dte': tr_dte_list[0],
        'intraday_mean5': intraday_mean5,
        'intraday_std5': intraday_std5,
        'intraday_mean2': intraday_mean2,
        'intraday_std2': intraday_std2,
        'intraday_mean1': intraday_mean1,
        'intraday_std1': intraday_std1
    }
Exemple #5
0
def get_futures_spread_carry_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [
            exp.get_futures_days2_expiration({
                'ticker': x,
                'date_to': date_to
            }) for x in ticker_list
        ]

    if 'aggregation_method' in kwargs.keys(
    ) and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:
        amcb_output = opUtil.get_aggregation_method_contracts_back(
            cmi.get_contract_specs(ticker_list[0]))
        aggregation_method = amcb_output['aggregation_method']
        contracts_back = amcb_output['contracts_back']

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = False

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {
            x: gfp.get_futures_price_preloaded(ticker_head=x)
            for x in [cmi.get_contract_specs(ticker_list[0])['ticker_head']]
        }

    if 'contract_multiplier' in kwargs.keys():
        contract_multiplier = kwargs['contract_multiplier']
    else:
        contract_multiplier = cmi.contract_multiplier[cmi.get_contract_specs(
            ticker_list[0])['ticker_head']]

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to, 5 * 365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    aligned_output = opUtil.get_aligned_futures_data(
        contract_list=ticker_list,
        tr_dte_list=tr_dte_list,
        aggregation_method=aggregation_method,
        contracts_back=contracts_back,
        date_to=date_to,
        futures_data_dictionary=futures_data_dictionary,
        use_last_as_current=use_last_as_current)

    aligned_data = aligned_output['aligned_data']
    current_data = aligned_output['current_data']

    last5_years_indx = aligned_data['settle_date'] >= datetime5_years_ago
    data_last5_years = aligned_data[last5_years_indx]

    ticker1_list = [
        current_data['c' + str(x + 1)]['ticker']
        for x in range(len(ticker_list) - 1)
    ]
    ticker2_list = [
        current_data['c' + str(x + 2)]['ticker']
        for x in range(len(ticker_list) - 1)
    ]
    yield_current_list = [
        100 * (current_data['c' + str(x + 1)]['close_price'] -
               current_data['c' + str(x + 2)]['close_price']) /
        current_data['c' + str(x + 2)]['close_price']
        for x in range(len(ticker_list) - 1)
    ]

    butterfly_current_list = [
        100 * (current_data['c' + str(x + 1)]['close_price'] -
               2 * current_data['c' + str(x + 2)]['close_price'] +
               current_data['c' + str(x + 3)]['close_price']) /
        current_data['c' + str(x + 2)]['close_price']
        for x in range(len(ticker_list) - 2)
    ]

    price_current_list = [
        current_data['c' + str(x + 1)]['close_price'] -
        current_data['c' + str(x + 2)]['close_price']
        for x in range(len(ticker_list) - 1)
    ]

    yield_history = [
        100 * (aligned_data['c' + str(x + 1)]['close_price'] -
               aligned_data['c' + str(x + 2)]['close_price']) /
        aligned_data['c' + str(x + 2)]['close_price']
        for x in range(len(ticker_list) - 1)
    ]

    butterfly_history = [
        100 * (aligned_data['c' + str(x + 1)]['close_price'] -
               2 * aligned_data['c' + str(x + 2)]['close_price'] +
               aligned_data['c' + str(x + 3)]['close_price']) /
        aligned_data['c' + str(x + 2)]['close_price']
        for x in range(len(ticker_list) - 2)
    ]

    change_5_history = [
        data_last5_years['c' + str(x + 1)]['change_5'] -
        data_last5_years['c' + str(x + 2)]['change_5']
        for x in range(len(ticker_list) - 1)
    ]

    change5 = [
        contract_multiplier * (current_data['c' + str(x + 1)]['change5'] -
                               current_data['c' + str(x + 2)]['change5'])
        for x in range(len(ticker_list) - 1)
    ]

    change10 = [
        contract_multiplier * (current_data['c' + str(x + 1)]['change10'] -
                               current_data['c' + str(x + 2)]['change10'])
        for x in range(len(ticker_list) - 1)
    ]

    change20 = [
        contract_multiplier * (current_data['c' + str(x + 1)]['change20'] -
                               current_data['c' + str(x + 2)]['change20'])
        for x in range(len(ticker_list) - 1)
    ]

    front_tr_dte = [
        current_data['c' + str(x + 1)]['tr_dte']
        for x in range(len(ticker_list) - 1)
    ]

    q_list = [
        stats.get_quantile_from_number({
            'x':
            yield_current_list[x],
            'y':
            yield_history[x].values,
            'clean_num_obs':
            max(100, round(3 * len(yield_history[x].values) / 4))
        }) for x in range(len(ticker_list) - 1)
    ]

    butterfly_q_list = [
        stats.get_quantile_from_number({
            'x':
            butterfly_current_list[x],
            'y':
            butterfly_history[x].values[-40:],
            'clean_num_obs':
            round(3 * len(butterfly_history[x].values[-40:]) / 4)
        }) for x in range(len(ticker_list) - 2)
    ]

    extreme_quantiles_list = [
        stats.get_number_from_quantile(
            y=x.values[:-40], quantile_list=[10, 25, 35, 50, 65, 75, 90])
        for x in butterfly_history
    ]
    butterfly_q10 = [x[0] for x in extreme_quantiles_list]
    butterfly_q25 = [x[1] for x in extreme_quantiles_list]
    butterfly_q35 = [x[2] for x in extreme_quantiles_list]
    butterfly_q50 = [x[3] for x in extreme_quantiles_list]
    butterfly_q65 = [x[4] for x in extreme_quantiles_list]
    butterfly_q75 = [x[5] for x in extreme_quantiles_list]
    butterfly_q90 = [x[6] for x in extreme_quantiles_list]

    butterfly_noise_list = [
        stats.get_stdev(x=butterfly_history[i].values[-20:])
        for i in range(len(ticker_list) - 2)
    ]
    butterfly_mean_list = [
        stats.get_mean(x=butterfly_history[i].values[-10:])
        for i in range(len(ticker_list) - 2)
    ]

    butterfly_z_list = [(butterfly_current_list[i] - butterfly_mean_list[i]) /
                        butterfly_noise_list[i]
                        for i in range(len(ticker_list) - 2)]

    percentile_vector = [
        stats.get_number_from_quantile(
            y=change_5_history[x].values,
            quantile_list=[1, 15, 85, 99],
            clean_num_obs=max(100,
                              round(3 * len(change_5_history[x].values) / 4)))
        for x in range(len(ticker_list) - 1)
    ]

    q1 = [x[0] for x in percentile_vector]
    q15 = [x[1] for x in percentile_vector]
    q85 = [x[2] for x in percentile_vector]
    q99 = [x[3] for x in percentile_vector]

    downside = [
        contract_multiplier * (q1[x] + q15[x]) / 2 for x in range(len(q1))
    ]
    upside = [
        contract_multiplier * (q85[x] + q99[x]) / 2 for x in range(len(q1))
    ]
    carry = [
        contract_multiplier *
        (price_current_list[x] - price_current_list[x + 1])
        for x in range(len(q_list) - 1)
    ]
    q_carry = [q_list[x] - q_list[x + 1] for x in range(len(q_list) - 1)]

    q_average = np.cumsum(q_list) / range(1, len(q_list) + 1)
    q_series = pd.Series(q_list)
    q_min = q_series.cummin().values
    q_max = q_series.cummax().values
    q_carry_average = [
        q_average[x] - q_list[x + 1] for x in range(len(q_list) - 1)
    ]
    q_carry_max = [q_max[x] - q_list[x + 1] for x in range(len(q_list) - 1)]
    q_carry_min = [q_min[x] - q_list[x + 1] for x in range(len(q_list) - 1)]

    reward_risk = [
        5 * carry[x] /
        ((front_tr_dte[x + 1] - front_tr_dte[x]) * abs(downside[x + 1]))
        if carry[x] > 0 else 5 * carry[x] /
        ((front_tr_dte[x + 1] - front_tr_dte[x]) * upside[x + 1])
        for x in range(len(carry))
    ]

    return pd.DataFrame.from_dict({
        'ticker1':
        ticker1_list,
        'ticker2':
        ticker2_list,
        'ticker1L': [''] + ticker1_list[:-1],
        'ticker2L': [''] + ticker2_list[:-1],
        'ticker_head':
        cmi.get_contract_specs(ticker_list[0])['ticker_head'],
        'front_tr_dte':
        front_tr_dte,
        'front_tr_dteL': [np.NAN] + front_tr_dte[:-1],
        'carry': [np.NAN] + carry,
        'q_carry': [np.NAN] + q_carry,
        'q_carry_average': [np.NAN] + q_carry_average,
        'q_carry_max': [np.NAN] + q_carry_max,
        'q_carry_min': [np.NAN] + q_carry_min,
        'butterfly_q': [np.NAN] + butterfly_q_list,
        'butterfly_z': [np.NAN] + butterfly_z_list,
        'reward_risk': [np.NAN] + reward_risk,
        'price':
        price_current_list,
        'priceL': [np.NAN] + price_current_list[:-1],
        'butterfly_q10': [np.NAN] + butterfly_q10,
        'butterfly_q25': [np.NAN] + butterfly_q25,
        'butterfly_q35': [np.NAN] + butterfly_q35,
        'butterfly_q50': [np.NAN] + butterfly_q50,
        'butterfly_q65': [np.NAN] + butterfly_q65,
        'butterfly_q75': [np.NAN] + butterfly_q75,
        'butterfly_q90': [np.NAN] + butterfly_q90,
        'butterfly_mean': [np.NAN] + butterfly_mean_list,
        'butterfly_noise': [np.NAN] + butterfly_noise_list,
        'q':
        q_list,
        'upside':
        upside,
        'downside':
        downside,
        'upsideL': [np.NAN] + upside[:-1],
        'downsideL': [np.NAN] + downside[:-1],
        'change5':
        change5,
        'change10':
        change10,
        'change20':
        change20
    })
Exemple #6
0
def get_overnight_calendar_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    #print(ticker_list)

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [exp.get_futures_days2_expiration({'ticker': x,'date_to': date_to}) for x in ticker_list]

    if 'aggregation_method' in kwargs.keys() and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:
        amcb_output = opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(ticker_list[0]))
        aggregation_method = amcb_output['aggregation_method']
        contracts_back = amcb_output['contracts_back']

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = False

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {x: gfp.get_futures_price_preloaded(ticker_head=x) for x in [cmi.get_contract_specs(ticker_list[0])['ticker_head']]}

    if 'contract_multiplier' in kwargs.keys():
        contract_multiplier = kwargs['contract_multiplier']
    else:
        contract_multiplier = cmi.contract_multiplier[cmi.get_contract_specs(ticker_list[0])['ticker_head']]

    aligned_output = opUtil.get_aligned_futures_data(contract_list=ticker_list,
                                                          tr_dte_list=tr_dte_list,
                                                          aggregation_method=aggregation_method,
                                                          contracts_back=contracts_back,
                                                          date_to=date_to,
                                                          futures_data_dictionary=futures_data_dictionary,
                                                          use_last_as_current=use_last_as_current)

    ticker1L = ''
    ticker2L = ''
    q_carry = np.nan
    butterfly_q = np.nan
    butterfly_z = np.nan
    butterfly_q10 = np.nan
    butterfly_q25 = np.nan
    butterfly_q35 = np.nan
    butterfly_q50 = np.nan
    butterfly_q65 = np.nan
    butterfly_q75 = np.nan
    butterfly_q90 = np.nan
    butterfly_noise = np.nan
    butterfly_mean = np.nan

    if not aligned_output['success']:
        return {'success': False,
                'ticker1L': ticker1L,
                'ticker2L': ticker2L,
                'q_carry': q_carry,
                'butterfly_q': butterfly_q,
                'butterfly_z': butterfly_z,
                'spread_price': np.nan,
                'butterfly_q10': butterfly_q10,
                'butterfly_q25': butterfly_q25,
                'butterfly_q35': butterfly_q35,
                'butterfly_q50': butterfly_q50,
                'butterfly_q65': butterfly_q65,
                'butterfly_q75': butterfly_q75,
                'butterfly_q90': butterfly_q90,
                'butterfly_mean': butterfly_mean,
                'butterfly_noise': butterfly_noise,
                'noise_100': np.nan,
                'dollar_noise_100': np.nan,
                'pnl1': np.nan,
                'pnl1_instant': np.nan,
                'pnl2': np.nan,
                'pnl5': np.nan,
                'pnl10': np.nan}

    aligned_data = aligned_output['aligned_data']
    current_data = aligned_output['current_data']
    aligned_data['spread_change_1'] = aligned_data['c1']['change_1']-aligned_data['c2']['change_1']
    aligned_data['spread_price'] = aligned_data['c1']['close_price']-aligned_data['c2']['close_price']
    spread_price_current = current_data['c1']['close_price']-current_data['c2']['close_price']

    pnl1 = (current_data['c1']['change1'] - current_data['c2']['change1'])*contract_multiplier
    pnl1_instant = (current_data['c1']['change1_instant'] - current_data['c2']['change1_instant']) * contract_multiplier
    pnl2 = (current_data['c1']['change2'] - current_data['c2']['change2']) * contract_multiplier
    pnl5 = (current_data['c1']['change5'] - current_data['c2']['change5']) * contract_multiplier
    pnl10 = (current_data['c1']['change10'] - current_data['c2']['change10']) * contract_multiplier

    noise_100 = np.std(aligned_data['spread_change_1'].iloc[-100:])

    if noise_100 == 0:
        noise_100 = np.nan

    spread_carry_output = sc.generate_spread_carry_sheet_4date(report_date=date_to)

    if spread_carry_output['success']:
        spread_report = spread_carry_output['spread_report']
        selected_line = spread_report[(spread_report['ticker1']==ticker_list[0])&(spread_report['ticker2']==ticker_list[1])]
        if not selected_line.empty:
            q_carry = selected_line['q_carry'].iloc[0]
            butterfly_q = selected_line['butterfly_q'].iloc[0]
            butterfly_z = selected_line['butterfly_z'].iloc[0]
            butterfly_q10 = selected_line['butterfly_q10'].iloc[0]
            butterfly_q25 = selected_line['butterfly_q25'].iloc[0]
            butterfly_q35 = selected_line['butterfly_q35'].iloc[0]
            butterfly_q50 = selected_line['butterfly_q50'].iloc[0]
            butterfly_q65 = selected_line['butterfly_q65'].iloc[0]
            butterfly_q75 = selected_line['butterfly_q75'].iloc[0]
            butterfly_q90 = selected_line['butterfly_q90'].iloc[0]
            butterfly_mean = selected_line['butterfly_mean'].iloc[0]
            butterfly_noise = selected_line['butterfly_noise'].iloc[0]
            ticker1L = selected_line['ticker1L'].iloc[0]
            ticker2L = selected_line['ticker2L'].iloc[0]

    return {'success': True,
            'ticker1L': ticker1L,
            'ticker2L': ticker2L,
            'q_carry': q_carry,
            'butterfly_q': butterfly_q,
            'butterfly_z': butterfly_z,
            'spread_price': spread_price_current,
            'butterfly_q10': butterfly_q10,
            'butterfly_q25': butterfly_q25,
            'butterfly_q35': butterfly_q35,
            'butterfly_q50': butterfly_q50,
            'butterfly_q65': butterfly_q65,
            'butterfly_q75': butterfly_q75,
            'butterfly_q90': butterfly_q90,
            'butterfly_mean': butterfly_mean,
            'butterfly_noise': butterfly_noise,
            'noise_100': noise_100,
            'dollar_noise_100': noise_100*contract_multiplier,
            'pnl1': pnl1,
            'pnl1_instant': pnl1_instant,
            'pnl2': pnl2,
            'pnl5': pnl5,
            'pnl10': pnl10}
Exemple #7
0
def get_futures_butterfly_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [
            exp.get_futures_days2_expiration({
                'ticker': x,
                'date_to': date_to
            }) for x in ticker_list
        ]

    if 'aggregation_method' in kwargs.keys(
    ) and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:
        amcb_output = opUtil.get_aggregation_method_contracts_back(
            cmi.get_contract_specs(ticker_list[0]))
        aggregation_method = amcb_output['aggregation_method']
        contracts_back = amcb_output['contracts_back']

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = False

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {
            x: gfp.get_futures_price_preloaded(ticker_head=x)
            for x in [cmi.get_contract_specs(ticker_list[0])['ticker_head']]
        }

    if 'contract_multiplier' in kwargs.keys():
        contract_multiplier = kwargs['contract_multiplier']
    else:
        contract_multiplier = cmi.contract_multiplier[cmi.get_contract_specs(
            ticker_list[0])['ticker_head']]

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to, 5 * 365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    if 'datetime2_months_ago' in kwargs.keys():
        datetime2_months_ago = kwargs['datetime2_months_ago']
    else:
        date2_months_ago = cu.doubledate_shift(date_to, 60)
        datetime2_months_ago = cu.convert_doubledate_2datetime(
            date2_months_ago)

    aligned_output = opUtil.get_aligned_futures_data(
        contract_list=ticker_list,
        tr_dte_list=tr_dte_list,
        aggregation_method=aggregation_method,
        contracts_back=contracts_back,
        date_to=date_to,
        futures_data_dictionary=futures_data_dictionary,
        use_last_as_current=use_last_as_current)
    if not aligned_output['success']:
        return {'success': False}

    current_data = aligned_output['current_data']
    aligned_data = aligned_output['aligned_data']

    month_diff_1 = 12 * (current_data['c1']['ticker_year'] -
                         current_data['c2']['ticker_year']) + (
                             current_data['c1']['ticker_month'] -
                             current_data['c2']['ticker_month'])
    month_diff_2 = 12 * (current_data['c2']['ticker_year'] -
                         current_data['c3']['ticker_year']) + (
                             current_data['c2']['ticker_month'] -
                             current_data['c3']['ticker_month'])

    weight_11 = 2 * month_diff_2 / (month_diff_1 + month_diff_1)
    weight_12 = -2
    weight_13 = 2 * month_diff_1 / (month_diff_1 + month_diff_1)

    price_1 = current_data['c1']['close_price']
    price_2 = current_data['c2']['close_price']
    price_3 = current_data['c3']['close_price']

    linear_interp_price2 = (weight_11 * aligned_data['c1']['close_price'] +
                            weight_13 * aligned_data['c3']['close_price']) / 2

    butterfly_price = aligned_data['c1']['close_price'] - 2 * aligned_data[
        'c2']['close_price'] + aligned_data['c3']['close_price']

    price_ratio = linear_interp_price2 / aligned_data['c2']['close_price']

    linear_interp_price2_current = (weight_11 * price_1 +
                                    weight_13 * price_3) / 2

    price_ratio_current = linear_interp_price2_current / price_2

    q = stats.get_quantile_from_number({
        'x':
        price_ratio_current,
        'y':
        price_ratio.values,
        'clean_num_obs':
        max(100, round(3 * len(price_ratio.values) / 4))
    })
    qf = stats.get_quantile_from_number({
        'x': price_ratio_current,
        'y': price_ratio.values[-40:],
        'clean_num_obs': 30
    })

    recent_quantile_list = [
        stats.get_quantile_from_number({
            'x': x,
            'y': price_ratio.values[-40:],
            'clean_num_obs': 30
        }) for x in price_ratio.values[-40:]
    ]

    weight1 = weight_11
    weight2 = weight_12
    weight3 = weight_13

    last5_years_indx = aligned_data['settle_date'] >= datetime5_years_ago
    last2_months_indx = aligned_data['settle_date'] >= datetime2_months_ago
    data_last5_years = aligned_data[last5_years_indx]

    yield1 = 100 * (
        aligned_data['c1']['close_price'] -
        aligned_data['c2']['close_price']) / aligned_data['c2']['close_price']
    yield2 = 100 * (
        aligned_data['c2']['close_price'] -
        aligned_data['c3']['close_price']) / aligned_data['c3']['close_price']

    yield1_last5_years = yield1[last5_years_indx]
    yield2_last5_years = yield2[last5_years_indx]

    yield1_current = 100 * (
        current_data['c1']['close_price'] -
        current_data['c2']['close_price']) / current_data['c2']['close_price']
    yield2_current = 100 * (
        current_data['c2']['close_price'] -
        current_data['c3']['close_price']) / current_data['c3']['close_price']

    butterfly_price_current = current_data['c1']['close_price']\
                            -2*current_data['c2']['close_price']\
                              +current_data['c3']['close_price']

    #return {'yield1': yield1, 'yield2': yield2, 'yield1_current':yield1_current, 'yield2_current': yield2_current}

    yield_regress_output = stats.get_regression_results({
        'x':
        yield2,
        'y':
        yield1,
        'x_current':
        yield2_current,
        'y_current':
        yield1_current,
        'clean_num_obs':
        max(100, round(3 * len(yield1.values) / 4))
    })

    yield_regress_output_last5_years = stats.get_regression_results({
        'x':
        yield2_last5_years,
        'y':
        yield1_last5_years,
        'x_current':
        yield2_current,
        'y_current':
        yield1_current,
        'clean_num_obs':
        max(100, round(3 * len(yield1_last5_years.values) / 4))
    })

    bf_qz_frame_short = pd.DataFrame()
    bf_qz_frame_long = pd.DataFrame()

    if (len(yield1) >= 40) & (len(yield2) >= 40):

        recent_zscore_list = [
            (yield1[-40 + i] - yield_regress_output['alpha'] -
             yield_regress_output['beta'] * yield2[-40 + i]) /
            yield_regress_output['residualstd'] for i in range(40)
        ]

        bf_qz_frame = pd.DataFrame.from_dict({
            'bf_price':
            butterfly_price.values[-40:],
            'q':
            recent_quantile_list,
            'zscore':
            recent_zscore_list
        })

        bf_qz_frame = np.round(bf_qz_frame, 8)
        bf_qz_frame.drop_duplicates(['bf_price'], keep='last', inplace=True)

        # return bf_qz_frame

        bf_qz_frame_short = bf_qz_frame[(bf_qz_frame['zscore'] >= 0.6)
                                        & (bf_qz_frame['q'] >= 85)]
        bf_qz_frame_long = bf_qz_frame[(bf_qz_frame['zscore'] <= -0.6)
                                       & (bf_qz_frame['q'] <= 12)]

    if bf_qz_frame_short.empty:
        short_price_limit = np.NAN
    else:
        short_price_limit = bf_qz_frame_short['bf_price'].min()

    if bf_qz_frame_long.empty:
        long_price_limit = np.NAN
    else:
        long_price_limit = bf_qz_frame_long['bf_price'].max()

    zscore1 = yield_regress_output['zscore']
    rsquared1 = yield_regress_output['rsquared']

    zscore2 = yield_regress_output_last5_years['zscore']
    rsquared2 = yield_regress_output_last5_years['rsquared']

    second_spread_weight_1 = yield_regress_output['beta']
    second_spread_weight_2 = yield_regress_output_last5_years['beta']

    butterfly_5_change = data_last5_years['c1']['change_5']\
                             - (1+second_spread_weight_1)*data_last5_years['c2']['change_5']\
                             + second_spread_weight_1*data_last5_years['c3']['change_5']

    butterfly_5_change_current = current_data['c1']['change_5']\
                             - (1+second_spread_weight_1)*current_data['c2']['change_5']\
                             + second_spread_weight_1*current_data['c3']['change_5']

    butterfly_1_change = data_last5_years['c1']['change_1']\
                             - (1+second_spread_weight_1)*data_last5_years['c2']['change_1']\
                             + second_spread_weight_1*data_last5_years['c3']['change_1']

    percentile_vector = stats.get_number_from_quantile(
        y=butterfly_5_change.values,
        quantile_list=[1, 15, 85, 99],
        clean_num_obs=max(100, round(3 * len(butterfly_5_change.values) / 4)))

    downside = contract_multiplier * (percentile_vector[0] +
                                      percentile_vector[1]) / 2
    upside = contract_multiplier * (percentile_vector[2] +
                                    percentile_vector[3]) / 2
    recent_5day_pnl = contract_multiplier * butterfly_5_change_current

    residuals = yield1 - yield_regress_output[
        'alpha'] - yield_regress_output['beta'] * yield2

    regime_change_ind = (residuals[last5_years_indx].mean() -
                         residuals.mean()) / residuals.std()

    seasonal_residuals = residuals[aligned_data['c1']['ticker_month'] ==
                                   current_data['c1']['ticker_month']]
    seasonal_clean_residuals = seasonal_residuals[np.isfinite(
        seasonal_residuals)]
    clean_residuals = residuals[np.isfinite(residuals)]

    contract_seasonality_ind = (
        seasonal_clean_residuals.mean() -
        clean_residuals.mean()) / clean_residuals.std()

    yield1_quantile_list = stats.get_number_from_quantile(
        y=yield1, quantile_list=[10, 90])
    yield2_quantile_list = stats.get_number_from_quantile(
        y=yield2, quantile_list=[10, 90])

    noise_ratio = (yield1_quantile_list[1] - yield1_quantile_list[0]) / (
        yield2_quantile_list[1] - yield2_quantile_list[0])

    daily_noise_recent = stats.get_stdev(x=butterfly_1_change.values[-20:],
                                         clean_num_obs=15)
    daily_noise_past = stats.get_stdev(
        x=butterfly_1_change.values,
        clean_num_obs=max(100, round(3 * len(butterfly_1_change.values) / 4)))

    recent_vol_ratio = daily_noise_recent / daily_noise_past

    alpha1 = yield_regress_output['alpha']

    residuals_last5_years = residuals[last5_years_indx]
    residuals_last2_months = residuals[last2_months_indx]

    residual_current = yield1_current - alpha1 - second_spread_weight_1 * yield2_current

    z3 = (residual_current - residuals_last5_years.mean()) / residuals.std()
    z4 = (residual_current - residuals_last2_months.mean()) / residuals.std()

    yield_change = (alpha1 + second_spread_weight_1 * yield2_current -
                    yield1_current) / (1 + second_spread_weight_1)

    new_yield1 = yield1_current + yield_change
    new_yield2 = yield2_current - yield_change

    price_change1 = 100 * (
        (price_2 * (new_yield1 + 100) / 100) - price_1) / (200 + new_yield1)
    price_change2 = 100 * (
        (price_3 * (new_yield2 + 100) / 100) - price_2) / (200 + new_yield2)

    theo_pnl = contract_multiplier * (
        2 * price_change1 - 2 * second_spread_weight_1 * price_change2)

    aligned_data['residuals'] = residuals
    aligned_output['aligned_data'] = aligned_data

    grouped = aligned_data.groupby(aligned_data['c1']['cont_indx'])
    aligned_data['shifted_residuals'] = grouped['residuals'].shift(-5)
    aligned_data['residual_change'] = aligned_data[
        'shifted_residuals'] - aligned_data['residuals']

    mean_reversion = stats.get_regression_results({
        'x':
        aligned_data['residuals'].values,
        'y':
        aligned_data['residual_change'].values,
        'clean_num_obs':
        max(100, round(3 * len(yield1.values) / 4))
    })

    theo_spread_move_output = su.calc_theo_spread_move_from_ratio_normalization(
        ratio_time_series=price_ratio.values[-40:],
        starting_quantile=qf,
        num_price=linear_interp_price2_current,
        den_price=current_data['c2']['close_price'],
        favorable_quantile_move_list=[5, 10, 15, 20, 25])

    theo_pnl_list = [
        x * contract_multiplier * 2
        for x in theo_spread_move_output['theo_spread_move_list']
    ]

    return {
        'success': True,
        'aligned_output': aligned_output,
        'q': q,
        'qf': qf,
        'theo_pnl_list': theo_pnl_list,
        'ratio_target_list': theo_spread_move_output['ratio_target_list'],
        'weight1': weight1,
        'weight2': weight2,
        'weight3': weight3,
        'zscore1': zscore1,
        'rsquared1': rsquared1,
        'zscore2': zscore2,
        'rsquared2': rsquared2,
        'zscore3': z3,
        'zscore4': z4,
        'zscore5': zscore1 - regime_change_ind,
        'zscore6': zscore1 - contract_seasonality_ind,
        'zscore7': zscore1 - regime_change_ind - contract_seasonality_ind,
        'theo_pnl': theo_pnl,
        'regime_change_ind': regime_change_ind,
        'contract_seasonality_ind': contract_seasonality_ind,
        'second_spread_weight_1': second_spread_weight_1,
        'second_spread_weight_2': second_spread_weight_2,
        'downside': downside,
        'upside': upside,
        'yield1': yield1,
        'yield2': yield2,
        'yield1_current': yield1_current,
        'yield2_current': yield2_current,
        'bf_price': butterfly_price_current,
        'short_price_limit': short_price_limit,
        'long_price_limit': long_price_limit,
        'noise_ratio': noise_ratio,
        'alpha1': alpha1,
        'alpha2': yield_regress_output_last5_years['alpha'],
        'residual_std1': yield_regress_output['residualstd'],
        'residual_std2': yield_regress_output_last5_years['residualstd'],
        'recent_vol_ratio': recent_vol_ratio,
        'recent_5day_pnl': recent_5day_pnl,
        'price_1': price_1,
        'price_2': price_2,
        'price_3': price_3,
        'last5_years_indx': last5_years_indx,
        'price_ratio': price_ratio,
        'mean_reversion_rsquared': mean_reversion['rsquared'],
        'mean_reversion_signif': (mean_reversion['conf_int'][1, :] < 0).all()
    }
def get_intraday_spread_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    ticker_list = [x for x in ticker_list if x is not None]
    ticker_head_list = [cmi.get_contract_specs(x)['ticker_head'] for x in ticker_list]
    ticker_class_list = [cmi.ticker_class[x] for x in ticker_head_list]

    print('-'.join(ticker_list))

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [exp.get_days2_expiration(ticker=x,date_to=date_to, instrument='futures')['tr_dte'] for x in ticker_list]

    weights_output = sutil.get_spread_weights_4contract_list(ticker_head_list=ticker_head_list)

    if 'aggregation_method' in kwargs.keys() and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:

        amcb_output = [opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(x)) for x in ticker_list]
        aggregation_method = max([x['aggregation_method'] for x in amcb_output])
        contracts_back = min([x['contracts_back'] for x in amcb_output])

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {x: gfp.get_futures_price_preloaded(ticker_head=x) for x in list(set(ticker_head_list))}

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = True

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to,5*365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    if 'num_days_back_4intraday' in kwargs.keys():
        num_days_back_4intraday = kwargs['num_days_back_4intraday']
    else:
        num_days_back_4intraday = 5

    contract_multiplier_list = [cmi.contract_multiplier[x] for x in ticker_head_list]

    aligned_output = opUtil.get_aligned_futures_data(contract_list=ticker_list,
                                                          tr_dte_list=tr_dte_list,
                                                          aggregation_method=aggregation_method,
                                                          contracts_back=contracts_back,
                                                          date_to=date_to,
                                                          futures_data_dictionary=futures_data_dictionary,
                                                          use_last_as_current=use_last_as_current)

    aligned_data = aligned_output['aligned_data']
    current_data = aligned_output['current_data']
    spread_weights = weights_output['spread_weights']
    portfolio_weights = weights_output['portfolio_weights']
    aligned_data['spread'] = 0
    aligned_data['spread_pnl_1'] = 0
    aligned_data['spread_pnl1'] = 0
    spread_settle = 0

    last5_years_indx = aligned_data['settle_date']>=datetime5_years_ago

    num_contracts = len(ticker_list)

    for i in range(num_contracts):
        aligned_data['spread'] = aligned_data['spread']+aligned_data['c' + str(i+1)]['close_price']*spread_weights[i]
        spread_settle = spread_settle + current_data['c' + str(i+1)]['close_price']*spread_weights[i]
        aligned_data['spread_pnl_1'] = aligned_data['spread_pnl_1']+aligned_data['c' + str(i+1)]['change_1']*portfolio_weights[i]*contract_multiplier_list[i]
        aligned_data['spread_pnl1'] = aligned_data['spread_pnl1']+aligned_data['c' + str(i+1)]['change1_instant']*portfolio_weights[i]*contract_multiplier_list[i]

    aligned_data['spread_normalized'] = aligned_data['spread']/aligned_data['c1']['close_price']

    data_last5_years = aligned_data[last5_years_indx]

    percentile_vector = stats.get_number_from_quantile(y=data_last5_years['spread_pnl_1'].values,
                                                       quantile_list=[1, 15, 85, 99],
                                                       clean_num_obs=max(100, round(3*len(data_last5_years.index)/4)))

    downside = (percentile_vector[0]+percentile_vector[1])/2
    upside = (percentile_vector[2]+percentile_vector[3])/2

    date_list = [exp.doubledate_shift_bus_days(double_date=date_to,shift_in_days=x) for x in reversed(range(1,num_days_back_4intraday))]
    date_list.append(date_to)

    intraday_data = opUtil.get_aligned_futures_data_intraday(contract_list=ticker_list,
                                       date_list=date_list)

    intraday_data['time_stamp'] = [x.to_datetime() for x in intraday_data.index]
    intraday_data['settle_date'] = intraday_data['time_stamp'].apply(lambda x: x.date())

    end_hour = min([cmi.last_trade_hour_minute[x] for x in ticker_head_list])
    start_hour = max([cmi.first_trade_hour_minute[x] for x in ticker_head_list])

    trade_start_hour = dt.time(9, 30, 0, 0)

    if 'Ag' in ticker_class_list:
        start_hour1 = dt.time(0, 45, 0, 0)
        end_hour1 = dt.time(7, 45, 0, 0)
        selection_indx = [x for x in range(len(intraday_data.index)) if
                          ((intraday_data['time_stamp'].iloc[x].time() < end_hour1)
                           and(intraday_data['time_stamp'].iloc[x].time() >= start_hour1)) or
                          ((intraday_data['time_stamp'].iloc[x].time() < end_hour)
                           and(intraday_data['time_stamp'].iloc[x].time() >= start_hour))]

    else:
        selection_indx = [x for x in range(len(intraday_data.index)) if
                          (intraday_data.index[x].to_datetime().time() < end_hour)
                          and(intraday_data.index[x].to_datetime().time() >= start_hour)]

    intraday_data = intraday_data.iloc[selection_indx]

    intraday_data['spread'] = 0

    for i in range(num_contracts):
        intraday_data['c' + str(i+1), 'mid_p'] = (intraday_data['c' + str(i+1)]['best_bid_p'] +
                                         intraday_data['c' + str(i+1)]['best_ask_p'])/2

        intraday_data['spread'] = intraday_data['spread']+intraday_data['c' + str(i+1)]['mid_p']*spread_weights[i]

    unique_settle_dates = intraday_data['settle_date'].unique()
    intraday_data['spread1'] = np.nan

    for i in range(len(unique_settle_dates)-1):
        if (intraday_data['settle_date'] == unique_settle_dates[i]).sum() == \
                (intraday_data['settle_date'] == unique_settle_dates[i+1]).sum():
            intraday_data.loc[intraday_data['settle_date'] == unique_settle_dates[i],'spread1'] = \
                intraday_data['spread'][intraday_data['settle_date'] == unique_settle_dates[i+1]].values

    intraday_data = intraday_data[intraday_data['settle_date'].notnull()]

    intraday_mean = intraday_data['spread'].mean()
    intraday_std = intraday_data['spread'].std()

    intraday_data_last2days = intraday_data[intraday_data['settle_date'] >= cu.convert_doubledate_2datetime(date_list[-2]).date()]
    intraday_data_yesterday = intraday_data[intraday_data['settle_date'] == cu.convert_doubledate_2datetime(date_list[-1]).date()]

    intraday_mean2 = intraday_data_last2days['spread'].mean()
    intraday_std2 = intraday_data_last2days['spread'].std()

    intraday_mean1 = intraday_data_yesterday['spread'].mean()
    intraday_std1 = intraday_data_yesterday['spread'].std()

    intraday_z = (spread_settle-intraday_mean)/intraday_std

    num_obs_intraday = len(intraday_data.index)
    num_obs_intraday_half = round(num_obs_intraday/2)
    intraday_tail = intraday_data.tail(num_obs_intraday_half)

    num_positives = sum(intraday_tail['spread'] > intraday_data['spread'].mean())
    num_negatives = sum(intraday_tail['spread'] < intraday_data['spread'].mean())

    recent_trend = 100*(num_positives-num_negatives)/(num_positives+num_negatives)

    pnl_frame = ifs.get_pnl_4_date_range(date_to=date_to, num_bus_days_back=20, ticker_list=ticker_list)

    if (len(pnl_frame.index)>15)&(pnl_frame['total_pnl'].std() != 0):
        historical_sharp = (250**(0.5))*pnl_frame['total_pnl'].mean()/pnl_frame['total_pnl'].std()
    else:
        historical_sharp = np.nan

    return {'downside': downside, 'upside': upside,'intraday_data': intraday_data,
            'z': intraday_z,'recent_trend': recent_trend,
            'intraday_mean': intraday_mean, 'intraday_std': intraday_std,
            'intraday_mean2': intraday_mean2, 'intraday_std2': intraday_std2,
            'intraday_mean1': intraday_mean1, 'intraday_std1': intraday_std1,
            'aligned_output': aligned_output, 'spread_settle': spread_settle,
            'data_last5_years': data_last5_years,'historical_sharp':historical_sharp}
def get_historical_risk_4strategy(**kwargs):

    con = msu.get_my_sql_connection(**kwargs)

    alias = kwargs['alias']

    #print(alias)

    if 'as_of_date' in kwargs.keys():
        as_of_date = kwargs['as_of_date']
    else:
        as_of_date = exp.doubledate_shift_bus_days()

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(as_of_date,5*365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    net_position = ts.get_net_position_4strategy_alias(alias=alias,con=con)
    net_position = net_position[net_position['instrument'] != 'O']

    if 'con' not in kwargs.keys():
        con.close()

    if net_position.empty:
        return {'downside': 0, 'pnl_5_change': []}

    amcb_output = [opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(x)) for x in net_position['ticker']]

    aggregation_method = pd.DataFrame(amcb_output)['aggregation_method'].max()

    if aggregation_method == 12:
        contracts_back = const.annualContractsBack
    elif aggregation_method == 3:
        contracts_back = const.quarterlyContractsBack
    elif aggregation_method == 1:
        contracts_back = const.monthlyContractsBack

    aligned_output = opUtil.get_aligned_futures_data(contract_list=net_position['ticker'].values,
                                    aggregation_method=aggregation_method,
                                    contracts_back=contracts_back,date_to=as_of_date,**kwargs)
    aligned_data = aligned_output['aligned_data']

    last5_years_indx = aligned_data['settle_date'] >= datetime5_years_ago
    data_last5_years = aligned_data[last5_years_indx]

    ticker_head_list = [cmi.get_contract_specs(x)['ticker_head'] for x in net_position['ticker']]
    contract_multiplier_list = [cmi.contract_multiplier[x] for x in ticker_head_list]

    pnl_5_change_list = [contract_multiplier_list[x]*
           net_position['qty'].iloc[x]*
           data_last5_years['c' + str(x+1)]['change_5'] for x in range(len(net_position.index))]

    pnl_5_change = sum(pnl_5_change_list)

    percentile_vector = stats.get_number_from_quantile(y=pnl_5_change.values,
                                                       quantile_list=[1, 15],
                                                       clean_num_obs=max(100, round(3*len(pnl_5_change.values)/4)))
    downside = (percentile_vector[0]+percentile_vector[1])/2

    unique_ticker_head_list = list(set(ticker_head_list))

    ticker_head_based_pnl_5_change = {x: sum([pnl_5_change_list[y] for y in range(len(ticker_head_list)) if ticker_head_list[y] == x])
                        for x in unique_ticker_head_list}

    return {'downside': downside, 'pnl_5_change': pnl_5_change,'ticker_head_based_pnl_5_change':ticker_head_based_pnl_5_change}
def get_historical_risk_4strategy(**kwargs):

    con = msu.get_my_sql_connection(**kwargs)

    alias = kwargs['alias']

    #print(alias)

    if 'as_of_date' in kwargs.keys():
        as_of_date = kwargs['as_of_date']
    else:
        as_of_date = exp.doubledate_shift_bus_days()

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(as_of_date,5*365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    net_position = ts.get_net_position_4strategy_alias(alias=alias,con=con)
    net_position = net_position[net_position['instrument'] != 'O']

    if 'con' not in kwargs.keys():
        con.close()

    if net_position.empty:
        return {'downside': 0, 'pnl_5_change': []}

    amcb_output = [opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(x)) for x in net_position['ticker']]

    aggregation_method = pd.DataFrame(amcb_output)['aggregation_method'].max()

    if aggregation_method == 12:
        contracts_back = const.annualContractsBack
    elif aggregation_method == 3:
        contracts_back = const.quarterlyContractsBack
    elif aggregation_method == 1:
        contracts_back = const.monthlyContractsBack

    aligned_output = opUtil.get_aligned_futures_data(contract_list=net_position['ticker'].values,
                                    aggregation_method=aggregation_method,
                                    contracts_back=contracts_back,date_to=as_of_date,**kwargs)
    aligned_data = aligned_output['aligned_data']

    last5_years_indx = aligned_data['settle_date'] >= datetime5_years_ago
    data_last5_years = aligned_data[last5_years_indx]

    ticker_head_list = [cmi.get_contract_specs(x)['ticker_head'] for x in net_position['ticker']]
    contract_multiplier_list = [cmi.contract_multiplier[x] for x in ticker_head_list]

    pnl_5_change_list = [contract_multiplier_list[x]*
           net_position['qty'].iloc[x]*
           data_last5_years['c' + str(x+1)]['change_5'] for x in range(len(net_position.index))]

    pnl_5_change = sum(pnl_5_change_list)

    percentile_vector = stats.get_number_from_quantile(y=pnl_5_change.values,
                                                       quantile_list=[1, 15],
                                                       clean_num_obs=max(100, round(3*len(pnl_5_change.values)/4)))
    downside = (percentile_vector[0]+percentile_vector[1])/2

    unique_ticker_head_list = list(set(ticker_head_list))

    ticker_head_based_pnl_5_change = {x: sum([pnl_5_change_list[y] for y in range(len(ticker_head_list)) if ticker_head_list[y] == x])
                        for x in unique_ticker_head_list}

    return {'downside': downside, 'pnl_5_change': pnl_5_change,'ticker_head_based_pnl_5_change':ticker_head_based_pnl_5_change}
def get_futures_spread_carry_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [exp.get_futures_days2_expiration({'ticker': x,'date_to': date_to}) for x in ticker_list]

    if 'aggregation_method' in kwargs.keys() and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:
        amcb_output = opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(ticker_list[0]))
        aggregation_method = amcb_output['aggregation_method']
        contracts_back = amcb_output['contracts_back']

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = False

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {x: gfp.get_futures_price_preloaded(ticker_head=x) for x in [cmi.get_contract_specs(ticker_list[0])['ticker_head']]}

    if 'contract_multiplier' in kwargs.keys():
        contract_multiplier = kwargs['contract_multiplier']
    else:
        contract_multiplier = cmi.contract_multiplier[cmi.get_contract_specs(ticker_list[0])['ticker_head']]

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to,5*365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    if 'datetime2_months_ago' in kwargs.keys():
        datetime2_months_ago = kwargs['datetime2_months_ago']
    else:
        date2_months_ago = cu.doubledate_shift(date_to,60)
        datetime2_months_ago = cu.convert_doubledate_2datetime(date2_months_ago)

    aligned_output = opUtil.get_aligned_futures_data(contract_list=ticker_list,
                                                          tr_dte_list=tr_dte_list,
                                                          aggregation_method=aggregation_method,
                                                          contracts_back=contracts_back,
                                                          date_to=date_to,
                                                          futures_data_dictionary=futures_data_dictionary,
                                                          use_last_as_current=use_last_as_current)

    aligned_data = aligned_output['aligned_data']
    current_data = aligned_output['current_data']

    last5_years_indx = aligned_data['settle_date']>=datetime5_years_ago
    data_last5_years = aligned_data[last5_years_indx]

    ticker1_list = [current_data['c' + str(x+1)]['ticker'] for x in range(len(ticker_list)-1)]
    ticker2_list = [current_data['c' + str(x+2)]['ticker'] for x in range(len(ticker_list)-1)]
    yield_current_list = [100*(current_data['c' + str(x+1)]['close_price']-
                           current_data['c' + str(x+2)]['close_price'])/
                           current_data['c' + str(x+2)]['close_price']
                            for x in range(len(ticker_list)-1)]

    price_current_list = [current_data['c' + str(x+1)]['close_price']-current_data['c' + str(x+2)]['close_price']
                            for x in range(len(ticker_list)-1)]


    yield_history = [100*(aligned_data['c' + str(x+1)]['close_price']-
                           aligned_data['c' + str(x+2)]['close_price'])/
                           aligned_data['c' + str(x+2)]['close_price']
                            for x in range(len(ticker_list)-1)]

    change_5_history = [data_last5_years['c' + str(x+1)]['change_5']-
                           data_last5_years['c' + str(x+2)]['change_5']
                            for x in range(len(ticker_list)-1)]

    change5 = [contract_multiplier*(current_data['c' + str(x+1)]['change5']-
                           current_data['c' + str(x+2)]['change5'])
                            for x in range(len(ticker_list)-1)]

    change10 = [contract_multiplier*(current_data['c' + str(x+1)]['change10']-
                           current_data['c' + str(x+2)]['change10'])
                            for x in range(len(ticker_list)-1)]

    change20 = [contract_multiplier*(current_data['c' + str(x+1)]['change20']-
                           current_data['c' + str(x+2)]['change20'])
                            for x in range(len(ticker_list)-1)]

    front_tr_dte = [current_data['c' + str(x+1)]['tr_dte'] for x in range(len(ticker_list)-1)]

    q_list = [stats.get_quantile_from_number({'x': yield_current_list[x],
                                'y': yield_history[x].values,
                                'clean_num_obs': max(100, round(3*len(yield_history[x].values)/4))})
                                for x in range(len(ticker_list)-1)]

    percentile_vector = [stats.get_number_from_quantile(y=change_5_history[x].values,
                                                       quantile_list=[1, 15, 85, 99],
                                                       clean_num_obs=max(100, round(3*len(change_5_history[x].values)/4)))
                                                       for x in range(len(ticker_list)-1)]

    q1 = [x[0] for x in percentile_vector]
    q15 = [x[1] for x in percentile_vector]
    q85 = [x[2] for x in percentile_vector]
    q99 = [x[3] for x in percentile_vector]

    downside = [contract_multiplier*(q1[x]+q15[x])/2 for x in range(len(q1))]
    upside = [contract_multiplier*(q85[x]+q99[x])/2 for x in range(len(q1))]
    carry = [contract_multiplier*(price_current_list[x]-price_current_list[x+1]) for x in range(len(q_list)-1)]
    q_carry = [q_list[x]-q_list[x+1] for x in range(len(q_list)-1)]
    reward_risk = [5*carry[x]/((front_tr_dte[x+1]-front_tr_dte[x])*abs(downside[x+1])) if carry[x]>0
      else 5*carry[x]/((front_tr_dte[x+1]-front_tr_dte[x])*upside[x+1]) for x in range(len(carry))]

    return pd.DataFrame.from_items([('ticker1',ticker1_list),
                         ('ticker2',ticker2_list),
                         ('ticker_head',cmi.get_contract_specs(ticker_list[0])['ticker_head']),
                         ('front_tr_dte',front_tr_dte),
                         ('carry',[np.NAN]+carry),
                         ('q_carry',[np.NAN]+q_carry),
                         ('reward_risk',[np.NAN]+reward_risk),
                         ('price',price_current_list),
                         ('q',q_list),
                         ('upside',upside),
                         ('downside',downside),
                         ('change5',change5),
                         ('change10',change10),
                         ('change20',change20)])
def get_futures_butterfly_signals(**kwargs):

    ticker_list = kwargs['ticker_list']
    date_to = kwargs['date_to']

    if 'tr_dte_list' in kwargs.keys():
        tr_dte_list = kwargs['tr_dte_list']
    else:
        tr_dte_list = [exp.get_futures_days2_expiration({'ticker': x,'date_to': date_to}) for x in ticker_list]

    if 'aggregation_method' in kwargs.keys() and 'contracts_back' in kwargs.keys():
        aggregation_method = kwargs['aggregation_method']
        contracts_back = kwargs['contracts_back']
    else:
        amcb_output = opUtil.get_aggregation_method_contracts_back(cmi.get_contract_specs(ticker_list[0]))
        aggregation_method = amcb_output['aggregation_method']
        contracts_back = amcb_output['contracts_back']

    if 'use_last_as_current' in kwargs.keys():
        use_last_as_current = kwargs['use_last_as_current']
    else:
        use_last_as_current = False

    if 'futures_data_dictionary' in kwargs.keys():
        futures_data_dictionary = kwargs['futures_data_dictionary']
    else:
        futures_data_dictionary = {x: gfp.get_futures_price_preloaded(ticker_head=x) for x in [cmi.get_contract_specs(ticker_list[0])['ticker_head']]}

    if 'contract_multiplier' in kwargs.keys():
        contract_multiplier = kwargs['contract_multiplier']
    else:
        contract_multiplier = cmi.contract_multiplier[cmi.get_contract_specs(ticker_list[0])['ticker_head']]

    if 'datetime5_years_ago' in kwargs.keys():
        datetime5_years_ago = kwargs['datetime5_years_ago']
    else:
        date5_years_ago = cu.doubledate_shift(date_to,5*365)
        datetime5_years_ago = cu.convert_doubledate_2datetime(date5_years_ago)

    if 'datetime2_months_ago' in kwargs.keys():
        datetime2_months_ago = kwargs['datetime2_months_ago']
    else:
        date2_months_ago = cu.doubledate_shift(date_to,60)
        datetime2_months_ago = cu.convert_doubledate_2datetime(date2_months_ago)

    aligned_output = opUtil.get_aligned_futures_data(contract_list=ticker_list,
                                                          tr_dte_list=tr_dte_list,
                                                          aggregation_method=aggregation_method,
                                                          contracts_back=contracts_back,
                                                          date_to=date_to,
                                                          futures_data_dictionary=futures_data_dictionary,
                                                          use_last_as_current=use_last_as_current)
    current_data = aligned_output['current_data']
    aligned_data = aligned_output['aligned_data']

    month_diff_1 = 12*(current_data['c1']['ticker_year']-current_data['c2']['ticker_year'])+(current_data['c1']['ticker_month']-current_data['c2']['ticker_month'])
    month_diff_2 = 12*(current_data['c2']['ticker_year']-current_data['c3']['ticker_year'])+(current_data['c2']['ticker_month']-current_data['c3']['ticker_month'])

    weight_11 = 2*month_diff_2/(month_diff_1+month_diff_1)
    weight_12 = -2
    weight_13 = 2*month_diff_1/(month_diff_1+month_diff_1)

    price_1 = current_data['c1']['close_price']
    price_2 = current_data['c2']['close_price']
    price_3 = current_data['c3']['close_price']

    linear_interp_price2 = (weight_11*aligned_data['c1']['close_price']+weight_13*aligned_data['c3']['close_price'])/2

    butterfly_price = aligned_data['c1']['close_price']-2*aligned_data['c2']['close_price']+aligned_data['c3']['close_price']

    price_ratio = linear_interp_price2/aligned_data['c2']['close_price']

    linear_interp_price2_current = (weight_11*price_1+weight_13*price_3)/2

    price_ratio_current = linear_interp_price2_current/price_2

    q = stats.get_quantile_from_number({'x': price_ratio_current, 'y': price_ratio.values, 'clean_num_obs': max(100, round(3*len(price_ratio.values)/4))})
    qf = stats.get_quantile_from_number({'x': price_ratio_current, 'y': price_ratio.values[-40:], 'clean_num_obs': 30})

    recent_quantile_list = [stats.get_quantile_from_number({'x': x, 'y': price_ratio.values[-40:], 'clean_num_obs': 30}) for x in price_ratio.values[-40:]]

    weight1 = weight_11
    weight2 = weight_12
    weight3 = weight_13

    last5_years_indx = aligned_data['settle_date']>=datetime5_years_ago
    last2_months_indx = aligned_data['settle_date']>=datetime2_months_ago
    data_last5_years = aligned_data[last5_years_indx]

    yield1 = 100*(aligned_data['c1']['close_price']-aligned_data['c2']['close_price'])/aligned_data['c2']['close_price']
    yield2 = 100*(aligned_data['c2']['close_price']-aligned_data['c3']['close_price'])/aligned_data['c3']['close_price']

    yield1_last5_years = yield1[last5_years_indx]
    yield2_last5_years = yield2[last5_years_indx]

    yield1_current = 100*(current_data['c1']['close_price']-current_data['c2']['close_price'])/current_data['c2']['close_price']
    yield2_current = 100*(current_data['c2']['close_price']-current_data['c3']['close_price'])/current_data['c3']['close_price']

    butterfly_price_current = current_data['c1']['close_price']\
                            -2*current_data['c2']['close_price']\
                              +current_data['c3']['close_price']

    yield_regress_output = stats.get_regression_results({'x':yield2, 'y':yield1,'x_current': yield2_current, 'y_current': yield1_current,
                                                         'clean_num_obs': max(100, round(3*len(yield1.values)/4))})
    yield_regress_output_last5_years = stats.get_regression_results({'x':yield2_last5_years, 'y':yield1_last5_years,
                                                                     'x_current': yield2_current, 'y_current': yield1_current,
                                                                     'clean_num_obs': max(100, round(3*len(yield1_last5_years.values)/4))})

    bf_qz_frame_short = pd.DataFrame()
    bf_qz_frame_long = pd.DataFrame()

    if (len(yield1) >= 40)&(len(yield2) >= 40):

        recent_zscore_list = [(yield1[-40+i]-yield_regress_output['alpha']-yield_regress_output['beta']*yield2[-40+i])/yield_regress_output['residualstd'] for i in range(40)]

        bf_qz_frame = pd.DataFrame.from_items([('bf_price', butterfly_price.values[-40:]),
                                           ('q',recent_quantile_list),
                                           ('zscore', recent_zscore_list)])

        bf_qz_frame = np.round(bf_qz_frame, 8)
        bf_qz_frame.drop_duplicates(['bf_price'], take_last=True, inplace=True)

    # return bf_qz_frame

        bf_qz_frame_short = bf_qz_frame[(bf_qz_frame['zscore'] >= 0.6) & (bf_qz_frame['q'] >= 85)]
        bf_qz_frame_long = bf_qz_frame[(bf_qz_frame['zscore'] <= -0.6) & (bf_qz_frame['q'] <= 12)]

    if bf_qz_frame_short.empty:
        short_price_limit = np.NAN
    else:
        short_price_limit = bf_qz_frame_short['bf_price'].min()

    if bf_qz_frame_long.empty:
        long_price_limit = np.NAN
    else:
        long_price_limit = bf_qz_frame_long['bf_price'].max()

    zscore1= yield_regress_output['zscore']
    rsquared1= yield_regress_output['rsquared']

    zscore2= yield_regress_output_last5_years['zscore']
    rsquared2= yield_regress_output_last5_years['rsquared']

    second_spread_weight_1 = yield_regress_output['beta']
    second_spread_weight_2 = yield_regress_output_last5_years['beta']

    butterfly_5_change = data_last5_years['c1']['change_5']\
                             - (1+second_spread_weight_1)*data_last5_years['c2']['change_5']\
                             + second_spread_weight_1*data_last5_years['c3']['change_5']

    butterfly_5_change_current = current_data['c1']['change_5']\
                             - (1+second_spread_weight_1)*current_data['c2']['change_5']\
                             + second_spread_weight_1*current_data['c3']['change_5']

    butterfly_1_change = data_last5_years['c1']['change_1']\
                             - (1+second_spread_weight_1)*data_last5_years['c2']['change_1']\
                             + second_spread_weight_1*data_last5_years['c3']['change_1']

    percentile_vector = stats.get_number_from_quantile(y=butterfly_5_change.values,
                                                       quantile_list=[1, 15, 85, 99],
                                                       clean_num_obs=max(100, round(3*len(butterfly_5_change.values)/4)))

    downside = contract_multiplier*(percentile_vector[0]+percentile_vector[1])/2
    upside = contract_multiplier*(percentile_vector[2]+percentile_vector[3])/2
    recent_5day_pnl = contract_multiplier*butterfly_5_change_current

    residuals = yield1-yield_regress_output['alpha']-yield_regress_output['beta']*yield2

    regime_change_ind = (residuals[last5_years_indx].mean()-residuals.mean())/residuals.std()
    contract_seasonality_ind = (residuals[aligned_data['c1']['ticker_month'] == current_data['c1']['ticker_month']].mean()-residuals.mean())/residuals.std()

    yield1_quantile_list = stats.get_number_from_quantile(y=yield1, quantile_list=[10, 90])
    yield2_quantile_list = stats.get_number_from_quantile(y=yield2, quantile_list=[10, 90])

    noise_ratio = (yield1_quantile_list[1]-yield1_quantile_list[0])/(yield2_quantile_list[1]-yield2_quantile_list[0])

    daily_noise_recent = stats.get_stdev(x=butterfly_1_change.values[-20:], clean_num_obs=15)
    daily_noise_past = stats.get_stdev(x=butterfly_1_change.values, clean_num_obs=max(100, round(3*len(butterfly_1_change.values)/4)))

    recent_vol_ratio = daily_noise_recent/daily_noise_past

    alpha1 = yield_regress_output['alpha']

    residuals_last5_years = residuals[last5_years_indx]
    residuals_last2_months = residuals[last2_months_indx]

    residual_current = yield1_current-alpha1-second_spread_weight_1*yield2_current

    z3 = (residual_current-residuals_last5_years.mean())/residuals.std()
    z4 = (residual_current-residuals_last2_months.mean())/residuals.std()

    yield_change = (alpha1+second_spread_weight_1*yield2_current-yield1_current)/(1+second_spread_weight_1)

    new_yield1 = yield1_current + yield_change
    new_yield2 = yield2_current - yield_change

    price_change1 = 100*((price_2*(new_yield1+100)/100)-price_1)/(200+new_yield1)
    price_change2 = 100*((price_3*(new_yield2+100)/100)-price_2)/(200+new_yield2)

    theo_pnl = contract_multiplier*(2*price_change1-2*second_spread_weight_1*price_change2)

    aligned_data['residuals'] = residuals
    aligned_output['aligned_data'] = aligned_data

    grouped = aligned_data.groupby(aligned_data['c1']['cont_indx'])
    aligned_data['shifted_residuals'] = grouped['residuals'].shift(-5)
    aligned_data['residual_change'] = aligned_data['shifted_residuals']-aligned_data['residuals']

    mean_reversion = stats.get_regression_results({'x':aligned_data['residuals'].values,
                                                         'y':aligned_data['residual_change'].values,
                                                          'clean_num_obs': max(100, round(3*len(yield1.values)/4))})

    theo_spread_move_output = su.calc_theo_spread_move_from_ratio_normalization(ratio_time_series=price_ratio.values[-40:],
                                                  starting_quantile=qf,
                                                  num_price=linear_interp_price2_current,
                                                  den_price=current_data['c2']['close_price'],
                                                  favorable_quantile_move_list=[5, 10, 15, 20, 25])

    theo_pnl_list = [x*contract_multiplier*2  for x in theo_spread_move_output['theo_spread_move_list']]

    return {'aligned_output': aligned_output, 'q': q, 'qf': qf,
            'theo_pnl_list': theo_pnl_list,
            'ratio_target_list': theo_spread_move_output['ratio_target_list'],
            'weight1': weight1, 'weight2': weight2, 'weight3': weight3,
            'zscore1': zscore1, 'rsquared1': rsquared1, 'zscore2': zscore2, 'rsquared2': rsquared2,
            'zscore3': z3, 'zscore4': z4,
            'zscore5': zscore1-regime_change_ind,
            'zscore6': zscore1-contract_seasonality_ind,
            'zscore7': zscore1-regime_change_ind-contract_seasonality_ind,
            'theo_pnl': theo_pnl,
            'regime_change_ind' : regime_change_ind,'contract_seasonality_ind': contract_seasonality_ind,
            'second_spread_weight_1': second_spread_weight_1, 'second_spread_weight_2': second_spread_weight_2,
            'downside': downside, 'upside': upside,
             'yield1': yield1, 'yield2': yield2, 'yield1_current': yield1_current, 'yield2_current': yield2_current,
            'bf_price': butterfly_price_current, 'short_price_limit': short_price_limit,'long_price_limit':long_price_limit,
            'noise_ratio': noise_ratio,
            'alpha1': alpha1, 'alpha2': yield_regress_output_last5_years['alpha'],
            'residual_std1': yield_regress_output['residualstd'], 'residual_std2': yield_regress_output_last5_years['residualstd'],
            'recent_vol_ratio': recent_vol_ratio, 'recent_5day_pnl': recent_5day_pnl,
            'price_1': price_1, 'price_2': price_2, 'price_3': price_3, 'last5_years_indx': last5_years_indx,
            'price_ratio': price_ratio,
            'mean_reversion_rsquared': mean_reversion['rsquared'],
            'mean_reversion_signif' : (mean_reversion['conf_int'][1, :] < 0).all()}