Exemple #1
0
 def learning_rate(self):
     # the learning rate is a function for the global step, so we could
     # define is entirely in tf ops, instead of a placeholder and feeding.
     with tf.device('/cpu:0'):
         lr = tf.placeholder(tf.float32, shape=[], name='learning_rate')
         self.summaries.append(scalar_summary('lr', lr))
         return lr
Exemple #2
0
    def build_model(self):
        if self.y_dim:
            self.y = tf.placeholder(
                tf.float32, [self.batch_size, self.y_dim], name='y')
        else:
            self.y = None

        if self.crop:
            image_dims = [self.output_height, self.output_width, self.c_dim]
        else:
            image_dims = [self.input_height, self.input_width, self.c_dim]

        self.inputs = tf.placeholder(
            tf.float32, [self.batch_size] + image_dims, name='real_images')

        inputs = self.inputs

        self.z = tf.placeholder(
            tf.float32, [None, self.z_dim], name='z')
        self.z_sum = histogram_summary("z", self.z)

        self.G = self.generator(self.z, self.y)
        self.D, self.D_logits = self.discriminator(inputs, self.y, reuse=False)
        self.sampler = self.sampler(self.z, self.y)
        self.D_, self.D_logits_ = self.discriminator(
            self.G, self.y, reuse=True)

        self.d_sum = histogram_summary("d", self.D)
        self.d__sum = histogram_summary("d_", self.D_)
        self.G_sum = image_summary("G", self.G)

        def sigmoid_cross_entropy_with_logits(x, y):
            try:
                return tf.nn.sigmoid_cross_entropy_with_logits(
                    logits=x, labels=y)
            except:
                return tf.nn.sigmoid_cross_entropy_with_logits(
                    logits=x, targets=y)

        self.d_loss_real = tf.reduce_mean(
            sigmoid_cross_entropy_with_logits(
                self.D_logits, tf.ones_like(self.D)))
        self.d_loss_fake = tf.reduce_mean(
            sigmoid_cross_entropy_with_logits(
                self.D_logits_, tf.zeros_like(self.D_)))
        self.g_loss = tf.reduce_mean(
            sigmoid_cross_entropy_with_logits(
                self.D_logits_, tf.ones_like(self.D_)))

        self.d_loss_real_sum = scalar_summary("d_loss_real", self.d_loss_real)
        self.d_loss_fake_sum = scalar_summary("d_loss_fake", self.d_loss_fake)

        self.d_loss = self.d_loss_real + self.d_loss_fake

        self.g_loss_sum = scalar_summary("g_loss", self.g_loss)
        self.d_loss_sum = scalar_summary("d_loss", self.d_loss)

        t_vars = tf.trainable_variables()

        self.d_vars = [var for var in t_vars if 'd_' in var.name]
        self.g_vars = [var for var in t_vars if 'g_' in var.name]

        self.saver = tf.train.Saver()
Exemple #3
0
    def build_model(self):
        if self.y_dim:
            self.y = tf.placeholder(tf.float32, [self.batch_size, self.y_dim],
                                    name='y')

        if self.crop:
            image_dims = [self.output_height, self.output_width, self.c_dim]
        else:
            image_dims = [self.input_height, self.input_width, self.c_dim]

        self.inputs = tf.placeholder(tf.float32,
                                     [self.batch_size] + image_dims,
                                     name='real_images')

        #输入discriminator真实图像placeholder
        inputs = self.inputs

        #输入generator噪声值placeholder
        self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
        self.z_sum = ops.histogram_summary('z', self.z)

        if self.y_dim:
            self.G = self.generator(self.z, self.y)
            self.D, self.D_logits = self.discriminator(inputs,
                                                       self.y,
                                                       reuse=False)

            self.sampler = self.sampler(self.z, self.y)
            self.D_, self.D_logits_ = self.discriminator(self.G,
                                                         self.y,
                                                         reuse=True)
        else:
            self.G = self.generator(self.z)
            self.D, self.D_logits = self.discriminator(inputs)

            self.sampler = self.sampler(self.z)
            self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

        self.d_sum = ops.histogram_summary('d', self.D)
        self.d__sum = ops.histogram_summary('d_', self.D_)
        self.G_sum = ops.image_summary('G', self.G)

        def sigmoid_cross_entropy_with_logits(x, y):
            try:
                return tf.nn.sigmoid_cross_entropy_with_logits(logits=x,
                                                               labels=y)
            except:
                return tf.nn.sigmoid_cross_entropy_with_logits(logits=x,
                                                               targets=y)

        #输入真实图像时,discriminator 损失值(label都为 1 )
        self.d_loss_real = tf.reduce_sum(
            sigmoid_cross_entropy_with_logits(self.D_logits,
                                              tf.ones_like(self.D)))

        #输入generator结果时,discriminator损失值(label都为0)
        self.d_loss_fake = tf.reduce_mean(
            sigmoid_cross_entropy_with_logits(self.D_logits_,
                                              tf.zeros_like(self.D_)))
        #以discriminator输出计算generator损失值,要求discriminator都判别为真(label为1)
        self.g_loss = tf.reduce_mean(
            sigmoid_cross_entropy_with_logits(self.D_logits_,
                                              tf.ones_like(self.D_)))

        self.d_loss_real_sum = ops.scalar_summary('d_loss_real',
                                                  self.d_loss_real)
        self.d_loss_fake_sum = ops.scalar_summary('d_loss_fake',
                                                  self.d_loss_fake)

        #discriminator总损失值
        self.d_loss = self.d_loss_real + self.d_loss_fake

        self.g_loss_sum = ops.scalar_summary('g_loss', self.g_loss)
        self.d_loss_sum = ops.scalar_summary('d_loss', self.d_loss)

        t_vars = tf.trainable_variables()

        self.d_vars = [var for var in t_vars if 'd_' in var.name]
        self.g_vars = [var for var in t_vars if 'g_' in var.name]

        self.saver = tf.train.Saver()
Exemple #4
0
    def create_model(self, obj_UserModel, stage_scope, batch_x=None):
        logging.debug('Stage: {}'.format(stage_scope))

        # get batch data
        if batch_x is None:
            self.init_dataloader()
            batch_x = self.dataloader.batch_x
            if self.stage != utils.STAGE_INF:
                batch_y = self.dataloader.batch_y
        else:
            assert self.stage == utils.STAGE_INF
            batch_x = batch_x

        logging.debug('batch_x shape={}'.format(batch_x.get_shape().as_list()))
        if self.stage != utils.STAGE_INF:
            logging.debug('batch_y shape={}'.format(
                batch_y.get_shape().as_list()))

# get avilable gpu list
        available_devices = utils.get_available_gpus()
        logging.debug('GPUs {}'.format(available_devices))
        if not available_devices:
            available_devices.append('/cpu:0')

        # available_devices = ['/gpu:0', '/gpu:1'] # DEVELOPMENT: virtual multi-gpu

        # Split the batch over the batch dimension over the number of available gpu's
        if len(available_devices) == 1:
            batch_x_split = [batch_x]
            if self.stage != utils.STAGE_INF:  # Has no labels
                batch_y_split = [batch_y]
        else:
            with tf.name_scope('parallelize'):
                # Split them up
                batch_x_split = tf.split(batch_x,
                                         len(available_devices),
                                         0,
                                         name='split_batch_x')
                if self.stage != utils.STAGE_INF:  # Has no labels
                    batch_y_split = tf.split(batch_y,
                                             len(available_devices),
                                             0,
                                             name='split_batch_y')

        # Run the user model through the build_model function that should be filled in
        # collect all type of lossess and all gpus
        grad_towers = []
        #with tf.variable_scope(tf.get_variable_scope()):
        for dev_i, dev_name in enumerate(available_devices):
            with tf.device(dev_name):
                current_scope = stage_scope if len(
                    available_devices) == 1 else ('tower_{}'.format(dev_i))
                with tf.name_scope(current_scope) as scope_tower:

                    with tf.variable_scope(utils.GraphKeys.MODEL,
                                           reuse=dev_i > 0 or self._reuse):
                        if self.stage != utils.STAGE_INF:
                            tower_model = self.add_tower(
                                obj_tower=obj_UserModel,
                                x=batch_x_split[dev_i],
                                y=batch_y_split[dev_i])
                        else:
                            tower_model = self.add_tower(
                                obj_tower=obj_UserModel,
                                x=batch_x_split[dev_i],
                                y=None)

                        tower_model.inference  # touch to initialize

                        # Reuse the variables int this scope for the next tower/device
                        tf.get_variable_scope().reuse_variables()

                        if self.stage == utils.STAGE_INF:
                            # For inferencing we will only use the inference part of the graph
                            continue

                        with tf.name_scope(utils.GraphKeys.LOSS):
                            for loss in self.get_tower_losses(tower_model):
                                tf.add_to_collection(utils.GraphKeys.LOSSES,
                                                     loss['loss'])

                            # Assemble all made within this scope so far. The user can add custom
                            # losses to the utils.GraphKeys.LOSSES collection
                            losses = tf.get_collection(utils.GraphKeys.LOSSES,
                                                       scope=scope_tower)
                            #logging.debug('get_collection: graykeys.LOSSES : {}'.format(losses))
                            #logging.debug('get_collection: graykeys.REGULARIZATION_LOSSES : {}'.format(ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES, scope=None)))
                            losses += ops.get_collection(
                                ops.GraphKeys.REGULARIZATION_LOSSES,
                                scope=None)
                            tower_loss = tf.add_n(losses, name='loss')

                            self.summaries.append(
                                scalar_summary(tower_loss.op.name, tower_loss))

                        if self.stage == utils.STAGE_TRAIN:
                            # collect all type of losses on the gpu
                            grad_tower_losses = []
                            # for each type loss
                            for loss in self.get_tower_losses(tower_model):
                                # compute gradients of this gpu
                                grad_tower_loss = self.optimizer.compute_gradients(
                                    loss['loss'], loss['vars'])
                                grad_tower_loss = tower_model.gradientUpdate(
                                    grad_tower_loss)
                                grad_tower_losses.append(grad_tower_loss)
                            grad_towers.append(grad_tower_losses)

        # Assemble and average the gradients from all towers
        if self.stage == utils.STAGE_TRAIN:
            n_gpus = len(available_devices)
            if n_gpus == 1:
                grad_averages = grad_towers[0]
            else:
                with tf.device(available_devices[0]):
                    n_losses = len(grad_towers[0])
                    grad_averages = []
                    # for each loss, averages loss on all gpus
                    for loss in xrange(n_losses):
                        grad_averages.append(
                            average_gradients([
                                grad_towers[gpu][loss]
                                for gpu in xrange(n_gpus)
                            ]))

            apply_gradient_ops = []
            for grad_avg in grad_averages:
                # apply average gradients
                apply_gradient_ops.append(
                    self.optimizer.apply_gradients(
                        grad_avg, global_step=self.global_step))

            # train op, list
            self._train = apply_gradient_ops
Exemple #5
0
    def build_graph_with_losses(self,
                                real,
                                config,
                                training=True,
                                summary=False,
                                reuse=False):
        real = real / 127.5 - 1.
        mask = random_mask(config, name='mask_input')
        x = real * (1. - mask)
        x1, x2, offset_flow = self.build_generator(x,
                                                   mask,
                                                   config,
                                                   reuse=reuse,
                                                   training=training)
        fake = x2
        losses = {}
        # apply mask and reconstruct
        fake_patched = fake * mask + x * (1. - mask)

        coarse_alpha = config.COARSE_ALPHA
        losses['l1_loss'] = coarse_alpha * tf.reduce_mean(
            tf.abs(real - x1) * mask)
        losses['l1_loss'] += tf.reduce_mean(tf.abs(real - x2) * mask)

        losses['ae_loss'] = coarse_alpha * tf.reduce_mean(
            tf.abs(real - x1) * (1. - mask))
        losses['ae_loss'] += tf.reduce_mean(tf.abs(real - x2) * (1. - mask))
        losses['ae_loss'] /= tf.reduce_mean(1. - mask)
        if summary:
            viz_img = [real, x, x1, x2, fake_patched]
            if offset_flow is not None:
                viz_img.append(
                    resize(offset_flow,
                           to_shape=config.IMG_SHAPE[0:2],
                           func=tf.image.resize_nearest_neighbor))
            images_summary(tf.concat(viz_img,
                                     axis=2), 'train_real_x_x1_x2_result_flow',
                           config.VIZ_MAX_OUT)

        # gan
        real_fake = tf.concat([real, fake_patched], axis=0)
        if config.GAN_WITH_MASK:
            real_fake = tf.concat(
                [real_fake,
                 tf.tile(mask, [config.BATCH_SIZE * 2, 1, 1, 1])],
                axis=3)

        # gan loss
        D_real_fake = self.build_discriminator(real_fake,
                                               training=training,
                                               reuse=reuse,
                                               nc=config.DIS_NC)
        D_real, D_fake = tf.split(D_real_fake, 2)
        g_loss, d_loss = gan_wgan_loss(D_real, D_fake, name='gan_loss')
        losses['g_loss'] = g_loss
        losses['d_loss'] = d_loss
        # gp
        interps = random_interpolates(real, fake_patched)
        D_interps = self.build_discriminator(interps,
                                             reuse=True,
                                             nc=config.DIS_NC)
        # apply gp
        gp_loss = gradients_penalty(interps, D_interps, mask=mask)
        losses['gp_loss'] = config.WGAN_GP_LAMBDA * gp_loss
        losses['d_loss'] = losses['d_loss'] + losses['gp_loss']
        if summary:
            gradients_summary(g_loss, fake, name='g_loss_to_fake')
            scalar_summary('d_loss_with_gp', losses['d_loss'])
            scalar_summary('d_loss', d_loss)
            scalar_summary('g_loss', g_loss)
            scalar_summary('d_loss', d_loss)
            scalar_summary('l1', losses['l1_loss'])
            scalar_summary('ae', losses['ae_loss'])
        losses['g_loss'] = config.GAN_LOSS_ALPHA * losses['g_loss']
        losses['g_loss'] += config.L1_LOSS_ALPHA * losses['l1_loss']
        losses['g_loss'] += config.AE_LOSS_ALPHA * losses['ae_loss']
        g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                   'generator')
        d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                   'discriminator')
        return g_vars, d_vars, losses