def test_aug_lag(self): x0 = np.array([[1], [1]]) start = time.time() x_opt = opt.augmented_lagrange(self.p, x0, tol=1e-4, tol_const=1e-4, hist=True) end = time.time() g = np.array( [np.linalg.norm(self.p.grad(x_opt[i])) for i in range(len(x_opt))]) c_e = np.array([ np.linalg.norm(np.minimum(self.p.eq_const(x_opt[i]), 0)) for i in range(len(x_opt)) ]) fig = plt.figure() plt.plot(np.arange(len(x_opt)), g, label='Gradient Norm') plt.plot(np.arange(len(x_opt)), c_e, label='Equality Constraint Norm') plt.xticks(np.arange(len(x_opt))) plt.xlabel('Iteration') plt.legend() fig.savefig('./fig/al-pEEq.eps', format='eps') print('\nProblem E-Eq, Augmented Lagrange') print('arg min v(x) =\n', x_opt[-1]) print('time =\n', end - start, 's')
def test_eq_const_al(self): x0 = np.array([[1], [0]]) x = opt.augmented_lagrange(self.p, x0, tol=1e-4, tol_const=1e-4) x_opt = np.array([[0.7071318], [0.7071093]]) self.assertTrue(np.linalg.norm(x_opt - x) < 1e-4)
def test_aug_lag(self): x0 = np.array([[2.1], [0.1]]) x = opt.augmented_lagrange(self.p, x0, tol=1e-4, tol_const=1e-4)
def test_aug_lag(self): x0 = np.array([[10], [1]]) x = opt.augmented_lagrange(self.p, x0, tol=1e-4, tol_const=1e-4) print(x)