def create_learning_rate_fn(config,): """Create learning rate schedule.""" # Linear warmup warmup_fn = optax.linear_schedule( init_value=0., end_value=config.train.lr_init, transition_steps=config.train.warmup_steps) if config.train.scheduler == "linear": decay_fn = optax.linear_schedule( init_value=config.train.lr_init, end_value=0., transition_steps=config.train.max_steps - config.train.warmup_steps) elif config.train.scheduler == "cosine": cosine_steps = max(config.train.max_steps - config.train.warmup_steps, 1) decay_fn = optax.cosine_decay_schedule( init_value=config.train.lr_init, decay_steps=cosine_steps) elif config.train.scheduler == "step": step_steps = max(config.train.max_steps - config.train.warmup_steps, 1) # pylint: disable=unused-variable def schedule(count): return config.train.lr_init * (0.5**(count // 50000)) decay_fn = schedule else: raise NotImplementedError schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[config.train.warmup_steps]) return schedule_fn
def get_learning_rate_schedule( total_batch_size, steps_per_epoch, total_steps, optimizer_config): """Build the learning rate schedule function.""" base_lr = _get_batch_scaled_lr(total_batch_size, optimizer_config.base_lr, optimizer_config.scale_by_batch) schedule_type = optimizer_config.schedule_type if schedule_type == 'steps': boundaries = optimizer_config.step_decay_kwargs.decay_boundaries boundaries.sort() decay_rate = optimizer_config.step_decay_kwargs.decay_rate boundaries_and_scales = { int(boundary * total_steps): decay_rate for boundary in boundaries} schedule_fn = optax.piecewise_constant_schedule( init_value=base_lr, boundaries_and_scales=boundaries_and_scales) elif schedule_type == 'cosine': warmup_steps = (optimizer_config.cosine_decay_kwargs.warmup_epochs * steps_per_epoch) # Batch scale the other lr values as well: init_value = _get_batch_scaled_lr( total_batch_size, optimizer_config.cosine_decay_kwargs.init_value, optimizer_config.scale_by_batch) end_value = _get_batch_scaled_lr( total_batch_size, optimizer_config.cosine_decay_kwargs.end_value, optimizer_config.scale_by_batch) schedule_fn = optax.warmup_cosine_decay_schedule( init_value=init_value, peak_value=base_lr, warmup_steps=warmup_steps, decay_steps=total_steps, end_value=end_value) elif schedule_type == 'constant_cosine': # Convert end_value to alpha, used by cosine_decay_schedule. alpha = optimizer_config.constant_cosine_decay_kwargs.end_value / base_lr # Number of steps spent in constant phase. constant_steps = int( optimizer_config.constant_cosine_decay_kwargs.constant_fraction * total_steps) decay_steps = total_steps - constant_steps constant_phase = optax.constant_schedule(value=base_lr) decay_phase = optax.cosine_decay_schedule( init_value=base_lr, decay_steps=decay_steps, alpha=alpha) schedule_fn = optax.join_schedules( schedules=[constant_phase, decay_phase], boundaries=[constant_steps]) else: raise ValueError(f'Unknown learning rate schedule: {schedule_type}') return schedule_fn
def create_learning_rate_schedule(learning_rate: float, warmup_steps: int): """Creates a rsqrt schedule with linear warmup.""" return optax.join_schedules([ optax.linear_schedule(init_value=0, end_value=learning_rate, transition_steps=warmup_steps), rsqrt_schedule(init_value=learning_rate, shift=warmup_steps), ], boundaries=[warmup_steps])
def scheduler_fn(lr, init_lr, warmup_steps, num_train_steps): decay_steps = num_train_steps - warmup_steps warmup_fn = optax.linear_schedule(init_value=init_lr, end_value=lr, transition_steps=warmup_steps) decay_fn = optax.linear_schedule(init_value=lr, end_value=1e-7, transition_steps=decay_steps) lr = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps]) return lr
def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn
def create_learning_rate_fn(workload: spec.Workload, hparams: spec.Hyperparameters): """Create learning rate schedule.""" warmup_fn = optax.linear_schedule(init_value=0., end_value=hparams.learning_rate, transition_steps=hparams.warmup_steps) cosine_fn = optax.cosine_decay_schedule(init_value=hparams.learning_rate, decay_steps=(workload.step_hint - hparams.warmup_steps)) schedule_fn = optax.join_schedules(schedules=[warmup_fn, cosine_fn], boundaries=[hparams.warmup_steps]) return schedule_fn
def get_cosine_schedule( max_learning_rate: float, total_steps: int, warmup_steps: int = 0) -> optax.Schedule: """Builds a cosine decay schedule with initial warm-up.""" if total_steps < warmup_steps: return optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps) return optax.join_schedules([ optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps), optax.cosine_decay_schedule(init_value=max_learning_rate, decay_steps=total_steps - warmup_steps), ], [warmup_steps])
def create_learning_rate_fn(hparams: spec.Hyperparamters, steps_per_epoch: int): """Create learning rate schedule.""" base_learning_rate = hparams.learning_rate * get_batch_size('imagenet') / 256. warmup_fn = optax.linear_schedule( init_value=0., end_value=base_learning_rate, transition_steps=hparams.warmup_epochs * steps_per_epoch) cosine_epochs = max(hparams.num_epochs - hparams.warmup_epochs, 1) cosine_fn = optax.cosine_decay_schedule( init_value=base_learning_rate, decay_steps=cosine_epochs * steps_per_epoch) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[hparams.warmup_epochs * steps_per_epoch]) return schedule_fn
def get_step_schedule( max_learning_rate: float, total_steps: int, warmup_steps: int = 0) -> optax.Schedule: """Builds a step schedule with initial warm-up.""" if total_steps < warmup_steps: return optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps) return optax.join_schedules([ optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps), optax.piecewise_constant_schedule( init_value=max_learning_rate, boundaries_and_scales={total_steps * 2 // 3: .1}), ], [warmup_steps])
def create_learning_rate_fn(config: ml_collections.ConfigDict, base_learning_rate: float, steps_per_epoch: int): """Create learning rate schedule.""" warmup_fn = optax.linear_schedule(init_value=0., end_value=base_learning_rate, transition_steps=config.warmup_epochs * steps_per_epoch) cosine_epochs = max(config.num_epochs - config.warmup_epochs, 1) cosine_fn = optax.cosine_decay_schedule(init_value=base_learning_rate, decay_steps=cosine_epochs * steps_per_epoch) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[config.warmup_epochs * steps_per_epoch]) return schedule_fn
def create_learning_rate_fn(config,): """Create learning rate schedule.""" # Linear warmup warmup_fn = optax.linear_schedule( init_value=0., end_value=config.train.lr_init, transition_steps=config.train.warmup_steps) decay_fn = optax.linear_schedule( init_value=config.train.lr_init, end_value=0., transition_steps=config.train.max_steps - config.train.warmup_steps) #cosine_steps = max(config.train.max_steps - config.train.warmup_steps, 1) #decay_fn = optax.cosine_decay_schedule( # init_value=config.train.lr_init, # decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[config.train.warmup_steps]) return schedule_fn
def value(self, count: JTensor) -> JTensor: p = self.params return jnp.array( optax.join_schedules([s.value for s in self._schedules], p.boundaries)(count), jnp.float32)
def value(self, value: JTensor) -> JTensor: p = self.params return jnp.array( optax.join_schedules([self.p0.value, self.p1.value], p.boundaries[:1])(value), jnp.float32)
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() configure_logger(model_args, training_args) # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" datasets = DatasetDict() datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: # make sure only "validation" and "train" keys remain" datasets = DatasetDict() datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split="validation", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}", cache_dir=model_args.cache_dir, ) # only normalized-inputs-training is supported feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True ) def prepare_dataset(batch): # check that all files have the correct sampling rate batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays vectorized_datasets = datasets.map( prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names ) # filter audio files that are too long vectorized_datasets = vectorized_datasets.filter( lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) ) def normalize(batch): return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` vectorized_datasets = vectorized_datasets.map( normalize, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, remove_columns=vectorized_datasets["train"].column_names, ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 config = Wav2Vec2Config.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, gradient_checkpointing=model_args.gradient_checkpointing, ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and ``config.feat_extract_norm='layer'" ) model = FlaxWav2Vec2ForPreTraining( config, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) ) data_collator = FlaxDataCollatorForWav2Vec2Pretraining( model=model, feature_extractor=feature_extractor, pad_to_multiple_of=data_args.pad_to_multiple_of ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) gumbel_rngs = jax.random.split(rng, jax.local_device_count()) num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() num_train_steps = len(vectorized_datasets["train"]) // train_batch_size * num_epochs # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) flat_mask = { path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")]) for path in flat_params } return traverse_util.unflatten_dict(flat_mask) # create adam optimizer adamw = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state and define training hyper-parameters state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw) num_negatives = model.config.num_negatives contrastive_logits_temperature = model.config.contrastive_logits_temperature num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups diversity_loss_weight = model.config.diversity_loss_weight # Define gradient update step fn def train_step(state, batch, dropout_rng, gumbel_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) gumbel_rng, new_gumbel_rng = jax.random.split(gumbel_rng) def loss_fn(params): negative_indices = batch.pop("sampled_negative_indices") gumbel_temperature = jnp.clip( model_args.max_gumbel_temperature * model_args.gumbel_temperature_decay ** state.step, a_min=model_args.min_gumbel_temperature, ) outputs = state.apply_fn( **batch, gumbel_temperature=gumbel_temperature, params=params, dropout_rng=dropout_rng, gumbel_rng=gumbel_rng, train=True, ) contrastive_loss = compute_contrastive_loss( outputs.projected_quantized_states, outputs.projected_states, negative_indices, batch["mask_time_indices"], contrastive_logits_temperature, num_negatives, ) diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors loss = contrastive_loss + diversity_loss_weight * diversity_loss return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean( {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" ) return new_state, metrics, new_dropout_rng, new_gumbel_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Define eval fn def eval_step(params, batch): negative_indices = batch.pop("sampled_negative_indices") outputs = model(**batch, params=params, train=False) contrastive_loss = compute_contrastive_loss( outputs.projected_quantized_states, outputs.projected_states, negative_indices, batch["mask_time_indices"], contrastive_logits_temperature, num_negatives, ) diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors loss = contrastive_loss + diversity_loss_weight * diversity_loss # summarize metrics metrics = {"loss": loss.mean(), "codevector_perplexity": outputs.codevector_perplexity} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(vectorized_datasets["train"]) train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for i, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) model_inputs = shard(model_inputs.data) # Model forward state, train_metric, dropout_rngs, gumbel_rngs = p_train_step( state, model_inputs, dropout_rngs, gumbel_rngs ) train_metrics.append(train_metric) train_time += time.time() - train_start epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})" ) # ======================== Evaluating ============================== num_eval_samples = len(vectorized_datasets["validation"]) eval_samples_idx = jnp.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [vectorized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward model_inputs = shard(model_inputs.data) metrics = p_eval_step(state.params, model_inputs) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_map(jnp.mean, eval_metrics) # Update progress bar epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Perplexity: {eval_metrics['codevector_perplexity']})" ) # Save metrics if has_tensorboard and jax.process_index() == 0: cur_step = epoch * (len(vectorized_datasets["train"]) // train_batch_size) write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params, push_to_hub=training_args.push_to_hub)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. # Note that this mask is specifically adapted for FlaxBERT-like models. # For other models, one should correct the layer norm parameter naming # accordingly. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax") if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO, datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: if training_args.hub_model_id is None: repo_name = get_full_repo_name(Path( training_args.output_dir).absolute().name, token=training_args.hub_token) else: repo_name = training_args.hub_model_id repo = Repository(training_args.output_dir, clone_from=repo_name) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, use_auth_token=True if model_args.use_auth_token else None, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, use_auth_token=True if model_args.use_auth_token else None, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.config_name: config = T5Config.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer), use_auth_token=True if model_args.use_auth_token else None, ) elif model_args.model_name_or_path: config = T5Config.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning( "You are instantiating a new config instance from scratch.") # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # Since we make sure that all sequences are of the same length, no attention_mask is needed. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_attention_mask=False) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token. # To ensure that the input length is `max_seq_length`, we need to increase the maximum length # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly. expanded_inputs_length, targets_length = compute_input_and_target_lengths( inputs_length=max_seq_length, noise_density=data_args.mlm_probability, mean_noise_span_length=data_args.mean_noise_span_length, ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = { k: list(chain(*examples[k])) for k in examples.keys() } total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= expanded_inputs_length: total_length = (total_length // expanded_inputs_length) * expanded_inputs_length # Split by chunks of max_len. result = { k: [ t[i:i + expanded_inputs_length] for i in range(0, total_length, expanded_inputs_length) ] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter( log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable.") # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) if model_args.model_name_or_path: model = FlaxT5ForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), use_auth_token=True if model_args.use_auth_token else None, ) else: config.vocab_size = len(tokenizer) model = FlaxT5ForConditionalGeneration( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), ) # Data collator # This one will take care of randomly masking the tokens. data_collator = FlaxDataCollatorForT5MLM( tokenizer=tokenizer, noise_density=data_args.mlm_probability, mean_noise_span_length=data_args.mean_noise_span_length, input_length=max_seq_length, target_length=targets_length, pad_token_id=model.config.pad_token_id, decoder_start_token_id=model.config.decoder_start_token_id, ) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int( training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() num_train_steps = len( tokenized_datasets["train"]) // train_batch_size * num_epochs num_of_hosts = jax.process_count() current_host_idx = jax.process_index() # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = set([ layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() ]) flat_mask = { path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params } return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) # Define gradient update step fn def train_step(state, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] # compute loss loss = optax.softmax_cross_entropy( logits, onehot(labels, logits.shape[-1])).mean() return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean( { "loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step) }, axis_name="batch") return new_state, metrics, new_dropout_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, )) # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] # compute loss loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) # compute accuracy accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) # summarize metrics metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0, )) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(tokenized_datasets["train"]) # Avoid using jax.numpy here in case of TPU training train_samples_idx = np.random.permutation(np.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for step, batch_idx in enumerate( tqdm(train_batch_idx, desc="Training...", position=1)): samples = [ tokenized_datasets["train"][int(idx)] for idx in batch_idx ] model_inputs = data_collator(samples) local_host_model_inputs = { key: np.split(model_inputs.data[key], num_of_hosts, axis=0)[current_host_idx] for key, value in model_inputs.data.items() } # Model forward model_inputs = shard(local_host_model_inputs) state, train_metric, dropout_rngs = p_train_step( state, model_inputs, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * (num_train_samples // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = jax_utils.unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:" f" {train_metric['learning_rate'].mean()})") train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) eval_metrics = [] for i, batch_idx in enumerate( tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [ tokenized_datasets["validation"][int(idx)] for idx in batch_idx ] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_map(jnp.mean, eval_metrics) # Update progress bar epochs.write( f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" ) # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get( jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub( commit_message= f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) eval_metrics = [] for i, batch_idx in enumerate( tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [ tokenized_datasets["validation"][int(idx)] for idx in batch_idx ] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_map(lambda metric: jnp.mean(metric).item(), eval_metrics) if jax.process_index() == 0: eval_metrics = { f"eval_{metric_name}": value for metric_name, value in eval_metrics.items() } path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True)
def value(self, value: JTensor) -> JTensor: return jnp.array( optax.join_schedules([s.value for s in self._schedules], self._boundaries)(value), jnp.float32)