Exemple #1
0
    def test_noise2(self):
        observation_noise = 0.01
        odometry_noise = 0.02

        sim = new_simulation(point_dim=3,
                             landmark_dim=3,
                             seed=20,
                             observation_noise=observation_noise,
                             odometry_noise=odometry_noise,
                             noise_matrix='diag')
        fg = factorgraph.GaussianFactorGraph()
        for f in sim.factors():
            fg.add_factor(f)

        optimizer = optim.Occam(fg)
        optimizer.optimize()
        optimizer.update()

        m_hat = np.concatenate([m.position for m in fg.landmarks])
        p_hat = np.concatenate([p.position for p in fg.points])

        m, p = np.ravel(sim.landmark_positions), np.ravel(sim.point_positions)

        self.assertTrue(
            np.linalg.norm(optimizer.res_d)**2 < len(optimizer.res_d) * 4 *
            observation_noise**2)
        self.assertTrue(
            np.linalg.norm(optimizer.res_t)**2 < len(optimizer.res_t) * 4 *
            odometry_noise**2)
        self.assertTrue(np.allclose(p, p_hat, atol=0.1))
Exemple #2
0
    def test_no_noise2(self):

        sim = new_simulation(point_dim=3, landmark_dim=3, seed=42)
        fg = factorgraph.GaussianFactorGraph()
        for f in sim.factors():
            fg.add_factor(f)

        landmarks = fg.landmarks
        self.assertTrue(sim.num_unique_landmarks < len(landmarks))

        optimizer = optim.Occam(fg)
        optimizer.optimize()
        optimizer.update()

        unique_landmarks = fg.landmarks
        self.assertEqual(sim.num_unique_landmarks, len(unique_landmarks))

        sim_groups, _ = sim.equivalences()
        fg_groups = set(
            frozenset(g) for g in fg.correspondence_map.set_map().values())
        diff = sim_groups.symmetric_difference(fg_groups)
        self.assertTrue(len(diff) == 0)

        m_hat = np.concatenate([m.position for m in fg.landmarks])
        p_hat = np.concatenate([p.position for p in fg.points])

        unique_order = [
            sim.unique_index_map[landmarks.index(k)] for k in unique_landmarks
        ]
        m, p = np.ravel(
            sim.unique_landmark_positions[unique_order, :]), np.ravel(
                sim.point_positions)

        self.assertTrue(np.allclose(p, p_hat))
        self.assertTrue(np.allclose(m, m_hat))
Exemple #3
0
    def test_no_measurements(self):

        fg = factorgraph.GaussianFactorGraph()

        optimizer = optim.Occam(fg)
        optimizer.optimize()
        optimizer.update()
Exemple #4
0
def occam_trial(seed=12, max_observations=4):

    observation_noise = 0.01
    odometry_noise = 0.02

    sim = new_simulation(point_dim=3,
                         landmark_dim=1,
                         num_points=NUM_POINTS,
                         num_landmarks=NUM_LANDMARKS,
                         seed=seed,
                         observation_noise=observation_noise,
                         odometry_noise=odometry_noise,
                         noise_matrix='identity')

    fg = factorgraph.GaussianFactorGraph()
    for f in sim.factors(max_observations=max_observations):
        fg.add_factor(f)

    start = time.time()
    optimizer = optim.Occam(fg)
    optimizer.optimize()
    optimizer.update(merge=False)
    end = time.time()
    time_elapsed = end - start

    m_hat = np.concatenate([m.position for m in fg.landmarks])
    p_hat = np.concatenate([p.position for p in fg.points])

    m, p = np.ravel(
        sim.landmark_positions[observed_landmark_index(fg, sim), :]), np.ravel(
            sim.point_positions)

    me = np.mean(np.concatenate([(m - m_hat), (p - p_hat)]))

    return me, time_elapsed
Exemple #5
0
    def test_sequential_noise(self):

        num_points = 1000
        observation_noise = 0.02
        odometry_noise = 0.01

        sim = new_simulation(point_dim=3,
                             landmark_dim=3,
                             num_points=1000,
                             seed=67,
                             observation_noise=observation_noise,
                             odometry_noise=odometry_noise,
                             noise_matrix='diag')

        num_partitions = 100
        # partition_indptr = np.sort(
        #     np.concatenate([[0], np.random.choice(sim.num_points, num_partitions - 1), [sim.num_points]]))
        partition_indptr = np.linspace(0,
                                       num_points,
                                       num_partitions + 1,
                                       dtype=np.int)

        fpw = int(np.max(partition_indptr[1:] - partition_indptr[:-1]) + 5)
        fg = factorgraph.GaussianFactorGraph(free_point_window=fpw)

        landmarks = sim.landmark_variables

        optimizer = optim.Occam(fg)
        for i in range(num_partitions):

            for f in sim.factors(
                (partition_indptr[i], partition_indptr[i + 1])):
                fg.add_factor(f)

            optimizer.optimize()
            optimizer.update()

            unique_landmarks = fg.landmarks
            unique_order = [
                sim.unique_index_map[landmarks.index(k)]
                for k in unique_landmarks
            ]

            sim_groups, _ = sim.equivalences((0, partition_indptr[i + 1]))
            fg_groups = set(
                frozenset(g) for g in fg.correspondence_map.set_map().values())
            diff = sim_groups.symmetric_difference(fg_groups)
            self.assertTrue(len(diff) == 0)

            p_hat = np.concatenate([p.position for p in fg.points])
            m_hat = np.concatenate([m.position for m in fg.landmarks])

            m = np.ravel(sim.unique_landmark_positions[unique_order, :])
            p = np.ravel(sim.point_positions[:partition_indptr[i + 1], :])

            self.assertTrue(np.allclose(p, p_hat, atol=0.1))
            self.assertTrue(np.allclose(m, m_hat, atol=0.1))
Exemple #6
0
    def test_odom_only(self):

        import factor

        sim = new_simulation(point_dim=3,
                             landmark_dim=1,
                             seed=1776,
                             observation_noise=0.0,
                             odometry_noise=0.0)
        fg = factorgraph.GaussianFactorGraph()
        for f in sim.factors():
            if isinstance(f, factor.ObservationFactor):
                continue
            fg.add_factor(f)

        optimizer = optim.Occam(fg)
        optimizer.optimize()
        optimizer.update()

        p_hat = np.concatenate([p.position for p in fg.points])
        p = np.ravel(sim.point_positions)

        self.assertTrue(np.allclose(p, p_hat, atol=1e-3))