def adaptOptimizer(problem, seedProblemParams, seedPrimitive): """Return the adaptation optimizer used by the primitive library""" #adapt for 100 iterations opt = optimize.localOptimizer(problem, 'ddp', tol=1e-4, seed=seedPrimitive, numIters=100) return opt
def adaptOptimizer(problem, seedProblemParams, seedPrimitive): """Return the adaptation optimizer used by the primitive library""" #100 simulated annealing iterations, 100 perturbation sampling iterations per iteration opt = optimize.localOptimizer(problem, 'sa', radius=0.01, samplecond=100, temperature=lambda x: 0.2 / (1.0 + x * 0.1), seed=seedPrimitive, numIters=100) return opt
def adaptOptimizer(problem,seedProblemParams,seedPrimitive): """Return the adaptation optimizer used by the primitive library""" opt = optimize.localOptimizer(problem,'gradient',tol=1e-4,x=seedPrimitive,numIters=100) opt.beginPrint() return opt